

Let Us Python
Solutions

5th Edition

Yashavant Kanetkar
Aditya Kanetkar

www.bpbonline.com

FIRST EDITION 2020
Fifth Revised & Updated Edition 2023
Copyright © BPB Publications, India
ISBN: 978-93-5551-185-0

All Rights Reserved. No part of this publication can be stored in a retrieval system or
reproduced in any form or by any means without the prior written permission of the
publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The Author and Publisher of this book have tried their best to ensure that the
programmes, procedures and functions described in the book are correct. However, the
author and the publishers make no warranty of any kind, expressed or implied, with
regard to these programmes or the documentation contained in the book. The author
and publisher shall not be liable in any event of any damages, incidental or
consequential, in connection with, or arising out of the furnishing, performance or use
of these programmes, procedures and functions. Product name mentioned are used for
identification purposes only and may be trademarks of their respective companies.

All trademarks referred to in the book are acknowledged as properties of their
respective owners.

Distributors:

BPB PUBLICATIONS
20, Ansari Road, Darya Ganj
New Delhi-110002
Ph: 23254990/23254991

MICRO MEDIA
Shop No. 5, Mahendra Chambers,
150 DN Rd. Next to Capital Cinema,
V.T. (C.S.T.) Station, MUMBAI-400 001
Ph: 22078296/22078297

DECCAN AGENCIES
4-3-329, Bank Street,
Hyderabad-500195
Ph: 24756967/24756400

BPB BOOK CENTRE
376 Old Lajpat Rai Market,
Delhi-110006
Ph: 23861747

Published by Manish Jain for BPB Publications, 20 Ansari Road, Darya Ganj, New
Delhi-110002 and Printed at Akash Press, New Delhi

www.bpbonline.com

Dedicated to
Nalinee & Prabhakar Kanetkar…

About Yashavant Kanetkar

Through his books and online Quest Video Courses on C, C++, Data
Structures, VC++, .NET, etc. Yashavant Kanetkar has created, molded and
groomed lacs of IT careers in the last two and half decades. Yashavant's
books and online courses have made a significant contribution in creating
top-notch IT manpower in India and abroad.
Yashavant's books are globally recognized and millions of students /
professionals have benefitted from them. His books have been translated
into Hindi, Gujarati, Japanese, Korean and Chinese languages. Many of his
books are published in India, USA, Japan, Singapore, Korea and China.
Yashavant is a much sought-after speaker in the IT field and has conducted
seminars/workshops at TedEx, IITs, NITs, IIITs and global software
companies.
Yashavant has been honored with the prestigious “Distinguished Alumnus
Award” by IIT Kanpur for his entrepreneurial, professional and academic
excellence. This award was given to top 50 alumni of IIT Kanpur who have
made significant contribution towards their profession and betterment of
society in the last 50 years.
In recognition of his immense contribution to IT education in India, he has
been awarded the "Best .NET Technical Contributor" and "Most Valuable
Professional" awards by Microsoft for 5 successive years.
Yashavant holds a BE from VJTI Mumbai and M. Tech. from IIT Kanpur.
His current affiliations include being a Director of KICIT Pvt. Ltd. and an

Adjunct Faculty at IIIT, Bangalore. He can be reached at
kanetkar@kicit.com or through http://www.kicit.com.

About Aditya Kanetkar

Aditya Kanetkar is currently working as a Software Engineer at Microsoft
India Development Center, Bengaluru. He has 6 years of experience
working in the software development industry. His current passion is
anything remotely connected to Python, Machine Learning, Distributed
Systems, Cloud Computing, Containers and C#.
Formerly, he worked at Microsoft HQ, Redmond, Washington and Oracle
HQ, Redwood City, California. Aditya holds a Bachelor's degree in
Computer Science and Engineering from IIT Guwahati and a Master's
degree in Computer Science from Georgia Tech, Atlanta.
Aditya can be reached through http://www.kicit.com.

Table of Contents

1 Introduction to Python
2 Getting Started
3 Python Basics
4 Strings
5 Decision Control Instruction
6 Repetition Control Instruction
7 Console Input/Output
8 Lists
9 Tuples
10 Sets
11 Dictionaries
12 Comprehensions
13 Functions
14 Recursion
15 Functional Programming
16 Modules and Packages
17 Namespaces
18 Classes and Objects
19 Intricacies of Classes and Objects
20 Containership and Inheritance
21 Iterators and Generators
22 Exception Handling
23 File Input/Output
24 Miscellany
25 Concurrency and Parallelism

26 Synchronization
27 Numpy Library

Periodic Tests

[A] Answer the following:

a. Mention 5 fields in which Python is popularly used.
Answer
- System Programming
- Game Programming
- Robotics Programming
- Rapid Prototyping
- Internet Scripting

b. Where is event-driven programming popularly used?
Answer
Event-driven programming is primarily used for creating GUI
application containing elements like windows, check, boxes, button,
combo-boxes, scroll-bars, menus etc. When we interact with these GUI
elements through mouse/keyboard/touch an event occurs and a function
gets called to tackle that event.

c. Why Python is called portable language?
Answer
We can create and test code on one platform and run it on any other
platform. This makes Python a portable language.

d. What is the single most important feature of different programming
models discussed in this chapter?
Answer

Functional programming model - It decomposes a problem into a set of
functions.
Procedural programming model - It solves a problem by implementing
one statement (procedure) at a time. Thus it contains explicit steps that
are executed in a specific order. It also uses functions, but these are not
mathematical functions like the ones used in functional programming.
Functional programming focuses on expressions, whereas Procedural
programming focuses on statements.
Object-oriented programming model - It mimics the real world by
creating inside the computer a mini-world of objects.
Event-driven programming model - It generates events when we interact
with different GUI elements like Windows, check boxes, buttons,
combo-boxes, scroll bars, menus, etc. Each event is tackled by calling an
event handler function.

e. Which of the following is not a feature of Python?
- Static typing
- Variable declaration before use
- Run-time error handling through error numbers
- Library support for containers like Lists, Dictionaries, Tuples
Answer
- Static typing
- Variable declaration before use
- Run-time error handling through error numbers

f. Give an example application of each of the following programming
models:
- Functional model
- Procedural model
- Object-oriented model
- Event-driven model
Answer
- Functional model: Finding factorial value of a number.
- Procedural model: Step-by-step procedure to sort a set of numbers.

- Object-oriented model: Interaction of objects like customer, product,
order, etc.

- Event-driven model: A GUI application which display "Hi" on left-
click of a mouse and "Hello" on right-click of a mouse.

[B] State whether the following statements are True or False:

a. Python is free to use and distribute.
Answer
True

b. Same Python program can work on different OS - microprocessor
combinations.
Answer
True

c. It is possible to use C++ or Java libraries in a Python program.
Answer
True

d. In Python type of the variable is decided based on its usage.
Answer
True

e. Python cannot be used for building GUI applications.
Answer
False

f. Python supports functional, procedural, object-oriented and event-
driven programming models.
Answer
True

g. GUI applications are based on event-driven programming model.
Answer
True

h. Functional programming model consists of interaction of multiple
objects.
Answer
False

[C] Match the following:

a. Functional programming 1. GUI element based interaction

b. Event-driven programming 2. Interaction of objects

c. Procedural programming 3. Statements

d. OOP 4. Maths-like functions

Answer

Functional programming - Maths-like Function
Event-driven programming - GUI element based interaction
Procedural programming - Statements
Object-oriented programming - Interaction of objects

[D] Fill in the blanks:

a. Functional programming paradigm is also known as Declarative
programming model.

b. Procedural programming paradigm is also known as Imperative
programming model.

c. Python was created by Guido Van Rossum.
d. Python programmers are often called Pythonists or Pythonistas.

[A] Answer the following questions:

a. What do the prompts C:\>, $ and >>> signify?
Answer
>>> signifies Python shell prompt.

b. In which two modes can IDLE be used?
Answer
Interactive mode and Script mode are the two modes used in IDLE.

c. What is the purpose of the two programming modes offered by IDLE?
Answer
Interactive mode is used for exploring Python syntax, seek help and
debug short programs. Script mode is used for writing full-fledge Python
Programs.

d. How can third party libraries be used in a Python program?
Answer
2

[B] Match the following pairs:

a. pip 1. Advanced mathematical operations

b. Jupyter 2. Scientific computing

c. Spyder 3. Manipulate numerical tables

d. PyPI 4. Visualization

e. NumPy 5. Computer vision

f. SciPy 6. Package installation tool

g. Pandas 7. Build and document applications

h. MatPlotLib 8. Scientific library

i. OpenCV 9. Python package index

Answer

a. pip 1. Package installation tool

b. Jupyter 2. Build and document applications

c. Spyder 3. Advanced mathematical operation

d. PyPI 4. Python package index

e. NumPy 5. Scientific library

f. SciPy 6. Scientific computing

g. Pandas 7. Manipulate numerical tables

h. MatPlotLib 8. Visualization

i. OpenCV 9. Computer vision

[C] State whether the following statements are True or False:

a. Python is a specification that can be implemented through languages like
Python, C#, Java, etc.
Answer
True

b. CPython is implementation of Python specification, written in C.
Answer
True

c. Python program is first compiled into byte code, which is then
interpreted.

Answer
True

d. Most Linux distributions already contain Python.
Answer
False

e. Windows system doesn't contain Python and it needs to be separately
installed.
Answer
True

f. Python programs can be built using IDLE, NetBeans, PyCharm and
Visual Studio Code.
Answer
True

g. Third-party Python packages are distributed using PyPI.
Answer
True

[A] Answer the following:

a. Write a program that swaps the values of variables a and b. You are not
allowed to use a third variable. You are not allowed to perform
arithmetic on a and b.
Program
Swap values of two variables
a = 5
b = 10
a, b = b, a
print('a =', a)
print('b =', b)
Output
a = 10
b = 5

b. Write a program that makes use of trigonometric functions available in
math module.
Program
Use of trigonometric functions
import math
a = math.pi / 6
print('The value of sine of pi / 6 is', end = ' ')
print(math.sin(a))
print('The value of cosine of pi / 6 is', end = ' ')

print(math.cos(a))
Output
The value of sine of pi / 6 is 0.49999999999999994
The value of cosine of pi / 6 is 0.8660254037844387

c. Write a program that generates 5 random numbers in the range 10 to 50.
Use a seed value of 6. Make a provision to change this seed value every
time you execute the program by associating it with time of execution?
Program
Generate random numbers
import random
import time
random.seed(6)
for i in range(5) :

print(random.randint(10, 50))
print()
t = int(time.time())
random.seed(t)
for i in range(5) :

print(random.randint(10, 50))
Output
46
15
41
26
12
39
36
21
13
18

d. Use trunc(), floor() and ceil() for numbers -2.8, -0.5, 0.2, 1.5 and 2.9
to understand the difference between these functions clearly.
Program

Use of trunc(), ceil() functions
import math
print(math.floor(-2.8))
print(math.trunc(-2.8))
print(math.ceil(-2.8))
print(math.floor(-0.5))
print(math.trunc(-0.5))
print(math.ceil(-0.5))
print(math.floor(0.2))
print(math.trunc(0.2))
print(math.ceil(0.2))
print(math.floor(1.5))
print(math.trunc(1.5))
print(math.ceil(1.5))
print(math.floor(2.9))
print(math.trunc(2.9))
print(math.ceil(2.9))
Output
-3
-2
-2
-1
0
0
0
0
1
1
1
2
2
2
3

e. Assume a suitable value for temperature of a city in Fahrenheit degrees.
Write a program to convert this temperature into Centigrade degrees and

print both temperatures.
Program
farh = 212
cen = ((farh - 32) * 5 / 9)
print(farh, cen)
Output
212 100.0

f. Given three sides a, b, c of a triangle, write a program to obtain and print
the values of three angles rounded to the next integer. Use the formulae:
a2 = b2 + c2 - 2bc cos A, b 2 = a2 + c2 - 2ac cos B, c2 = a2 + b2 - 2ab cos
C
Program
import math
a, b, c = 3, 4, 5
angleA = (math.acos((b * b + c * c - a * a) / (2 * b * c)) * 180) / 3.14
print(angleA)
angleB = (math.acos((a * a + c * c - b * b) / (2 * a * c)) * 180) / 3.14
print(angleB)
angleC = (math.acos((a * a + b * b - c * c) / (2 * a * b)) * 180) / 3.14
print(angleC)
Output
36.88859859324559
53.157050713468216
90.04564930671381

[B] How will you perform the following operations?

a. Print imaginary part out of 2 + 3j
Answer
print(a.imag)

b. Obtain conjugate of 4 + 2j
Answer
a = 4 + 2j

b = a.conjugate()
c. Print decimal equivalent of binary '1100001110'
Answer
print(int('1100001110', 2))

d. Convert a float value 4.33 into a numeric string
Answer
a = str(4.33)

e. Obtain integer quotient and remainder while dividing 29 with 5
Answer
divmod(29, 5)

f. Obtain hexadecimal equivalent of decimal 34567
Answer
hex(34567)

g. Round-off 45.6782 to second decimal place
Answer
a = round(45.6782, 2)

h. Obtain 4 from 3.556
Answer
a = round(3.556)

i. Obtain 17 from 16.7844
Answer
a = round(16.7844)

j. Obtain remainder on dividing 3.45 with 1.22
Answer
a = 3.45 % 1.22

[C] Which of the following is invalid variable name and why?
BASICSALARY - Valid
_basic - Valid

basic-hra - Invalid. Cannot contain special character - #MEAN - Invalid.
Cannot start with #
group. - Invalid. Cannot end with .
422 - Invalid. Cannot start with digit
pop in 2020 - Invalid. Cannot contain space over - Valid
timemindovermatter - Valid SINGLE - Valid
hELLO - Valid
queue. - Invalid. Cannot end with .
team'svictory - Invalid. Cannot contain special character '
Plot # 3 - Invalid. Cannot contain space and special character # 2015_DDay
- Invalid. Cannot start with digit

[D] Evaluate the following expressions:

a. 2 ** 6 // 8 % 2
Answer
= 64 // 8 % 2
= 8 % 2
= 0

b. 9 ** 2 // 5 - 3
Answer
= 81 // 5 - 3
= 16 - 3
= 13

c. 10 + 6 - 2 % 3 + 7 - 2
Answer
= 10 + 6 - 2 + 7 - 2
= 16 - 5 + 7 - 2
= 14 + 7 - 2
= 21 - 2
= 19

d. 5 % 10 + 10 -23 * 4 // 3

Answer
= 5 + 10 - 23 * 4 // 3
= 5 + 10 - 92 // 3
= 5 + 10 - 30
= 15 - 30
= -15

e. 5 + 5 // 5 - 5 * 5 ** 5 % 5
Answer
= 5 + 5 // 5 - 5 * 3125 % 5
= 5 + 1 - 5 * 3125 % 5
= 5 + 1 - 15625 % 5
= 5 + 1 - 0
= 6

f. 7 % 7 + 7 // 7 - 7 * 7
Answer
= 0 + 7 // 7 - 7 * 7
= 0 + 1 - 7 * 7
= 0 + 1 - 49
= 1 - 49
= -48

[E] Evaluate the following expressions:

a. min(2, 6, 8, 5)
Answer
2

b. bin(46)
Answer
0b101110

c. round(10.544336, 2)
Answer
10.54

d. math.hypot(6, 8)

Answer
10

e. math.modf(3.1415)
Answer
0.14150000000000018, 3.0

[F] Match the following:

a. complex 1. \

b. Escape special character 2. Container type

c. Tuple 3. Basic type

d. Natural logarithm 4. log()

e. Common logarithm 5. log10()

Answer
complex - Basic type
Escape special character - \
Tuple - Container type
Natural Logarithm - log()
Common logarithm - log10()

[A] Answer the following:

a. Write a program that generates the following output from the string
'Shenanigan'.

S h
a n
enanigan
Shenan
Shenan
Shenan
Shenan
Shenanigan
Seaia
Snin
Saa
ShenaniganType
ShenanWabbite
Program
Extract string subparts
s = 'Shenanigan'
print(s[0], s[1])
print(s[4], s[5])
print(s[2:])
print(s[:6])
print(s[:-4])

print(s[-10:-4])
print(s[0:6])
print(s[:])
print(s[0:10:2])
print(s[0:10:3])
print(s[0:10:4])
s = 'Shenanigan'
g = 'Type'
a = s + g
print(a)
s = 'Shenanigan'
t = 'Wabbite'
b = s[:6] + t
print(b)
Output
S h
a n
enanigan
Shenan
Shenan
Shenan
Shenan
Shenanigan
Seaia
Snin
Saa
ShenaniganType
ShenanWabbite

b. Write a program to convert the following string
'Visit ykanetkar.com for online courses in programming'
into
'Visit Ykanetkar.com For Online Courses In Programming'
Program

Capitalize each word of a string
s = 'Visit ykanetkar.com for online courses in programming'
t = ''
for w in s.split() :

t = t + w.capitalize() + ' '
print(t)
Output
Visit Ykanetkar.com For Online Courses In Programming

c. Write a program to convert the following string
'Light travels faster than sound. This is why some people appear bright
until you hear them speak.'
into
'LIGHT travels faster than SOUND. This is why some people appear
bright until you hear them speak.'
Program
Search and replace in a string
msg = 'Light travels faster than sound. This is why some people appear
bright until you hear them speak.'
newmsg = msg.replace('Light', 'LIGHT').replace('sound', 'SOUND')
print(newmsg)
Output
LIGHT travels faster than SOUND. This is why some people appear
bright until you hear them speak.

d. What will be the output of the following program?
s = 'HumptyDumpty'
print('s = ', s)
print(s.isalpha())
print(s.isdigit())
print(s.isalnum())
print(s.islower())
print(s.isupper())
print(s.startswith('Hump'))

print(s.endswith('Dump'))
Output
s = HumptyDumpty
True
False
True
False
False
True
False

e. What is the purpose of a raw string?
Answer
Python raw string is created by prefixing a string literal with 'r' or 'R'.
Python raw string treats backslash (\) as a literal character. This is useful
when we want to have a string that contains backslash and don't want it
to be treated as an escape character.

f. If we wish to work with an individual word in the following string, how
will you separate them out:
'The difference between stupidity and genius is that genius has its limits'
Program
msg = 'The difference between stupidity and genius is that genius has its
limits'
for word in msg.split() :

print(word)
Output
The
difference
between
stupidity
and
genius
is
that

genius
has
its
limits

g. Mention two ways to store a string: He said, "Let Us Python".
Answer
s1 = "He said, \"Let Us Python\""
s2 = r'He said, "Let Us Python"'

h. What will be the output of following code snippet?
print(id('Imaginary'))
print(type('Imaginary'))
Answer
36339048
<class 'str'>

i. What will be the output of the following code snippet?
s3 = 'C:\\Users\\Kanetkar\\Documents'
print(s3.split('\\'))
print(s3.partition('\\'))
Answer
['C:', 'Users', 'Kanetkar', 'Documents']
('C:', '\\', 'Users\\Kanetkar\\Documents')

j. Strings in Python are iterable, sliceable and immutable. (True/False)
Answer
True

k. How will you extract ' TraPoete' from the string 'ThreadProperties'?
Answer
s = 'ThreadProperties'
print(s[::2])

l. How will you eliminate spaces on either side of the string ' Flanked by
spaces on either side '?
Answer

s = ' Flanked by spaces on either side '
print(s.strip())

m. What will be the output of the following code snippet?
s1 = s2 = s3 = "Hello"
print(id(s1), id(s2), id(s3))
Answer
36330016 36330016 36330016

n. What will get stored in ch in the following code snippet:
msg = 'Aeroplane'
ch = msg[-0]
Answer
A

[B] Match the following assuming msg = 'Keep yourself warm'

a. msg.partition(' ') 1. 18

b. msg.split(' ') 2. kEEP YOURSELF WARM

c. msg.startswith('Keep') 3. Keep yourself warm

d. msg.endswith('Keep') 4. 3

e. msg.swapcase() 5. True

f. msg.capitalize() 6. False

g. msg.count('e') 7. ['Keep', 'yourself', 'warm']

h. len(msg) 8. ('Keep', ' ', 'yourself warm')

i. msg[0] 9. Keep yourself w

j. msg[-1] 10. keep yourself wa

k. msg[1:1:1] 11. K

l. msg[-1:3] 12. empty string

m. msg[:-3] 13. m

n. msg[-3:] 14. arm

o. msg[0:-2] 15. empty string

Answer
msg.partition(' ') - ['Keep','','yourself warm']
msg.split(' ') - ['Keep', 'yourself', 'warm']
msg.startswith('Keep') - True
msg.endswith('Keep') - False
msg.swapcase() - kEEP YOURSELF WARM
msg.capitalize() - Keep yourself warm
msg.count('e') - 3
len(msg) - 18
msg[0] - K
msg[-1] - m
msg[1:1:1] - empty string
msg[-1:3] - empty string
msg[:-3] - Keep yourself w
msg[-3:] - arm
msg[0:-2] - Keep yourself wa

[C] Give an example string which will return a match for the following
regular expressions:
\w+
\d{2}
\w{1,}
\w{2,4}
A*B
\d+?
Answer
01
smiling
1234
AAAAB

1 in 12345

[A] Answer the following:

a. Write conditional expressions for
- If a < 10 b = 20, else b = 30
- Print 'Morning' if time < 12, otherwise print 'Afternoon'
- If marks >= 70, set remarks to True, otherwise False
Answer
b = 20 if a < 10 else 30
print('Morning')if time < 12 else print('Afternoon')
remarks = 'True' if marks >= 70 else 'False'

b. Rewrite the following code snippet in 1 line:
x = 3
y = 3.0
if x == y :

print('x and y are equal')
else :

print('x and y are not equal')
Answer
x, y = 3, 3.0
print('x and y are equal') if x == y else print('x and y are not equal')
Output
x and y are equal

c. What happens when a pass statement is executed?

Answer
pass statement is a no-op instruction and nothing happens when it gets
executed.

[B] What will be the output of the following programs?

a. i, j, k = 4, -1, 0
w = i or j or k
x = i and j and k
y = i or j and k
z = i and j or k
print(w, x, y, z)
Output
4 0 4 -1

b. a = 10
a = not not a
print(a)
Output
True

c. x, y, z = 20, 40, 45
if x > y and x > z :

print('biggest = ' + str(x))
elif y > x and y > z :

print('biggest = ' + str(y))
elif z > x and z > y :

print('biggest = ' + str(z))
Output
biggest = 45

d. num = 30
k = 100 if num <= 10 else 500
print(k)
Output
500

e. a = 10
b = 60
if a and b > 20 :

print('Hello')
else :

print('Hi')
Output
Hello

f. a = 10
b = 60
if a > 20 and b > 20 :

print('Hello')
else :

print('Hi')
Output
Hi

g. a = 10
if a = 30 or 40 or 60 :

print('Hello')
else :

print('Hi')
Output
Error

h. a = 10
if a = 30 or a == 40 or a == 60 :

print('Hello')
else :

print('Hi')
Output
Error

i. a = 10
if a in (30, 40, 50) :

print('Hello')
else :

print('Hi')
Output
Hi

[C] Point out the errors, if any, in the following programs:

a. a = 12.25
b = 12.52
if a = b :

print('a and b are equal')
Answer
Error: Invalid syntax. Use a == b

b. if ord('X') < ord('x')
print('Unicode value of X is smaller than that of x')

Answer
Error: Invalid syntax. Use : at the end of if as shown below: if ord('X') <
ord('x') :

c. x = 10
if x >= 2 then

print('x')
Answer
Error: Invalid syntax. Use : at the end of if as shown below:
if x >= 2 :

d. x = 10 ; y = 15
if x % 2 = y % 3

print('Carpathians\n')
Answer
Error: Invalid syntax. Use == in place of = during comparison

e. x, y = 30, 40
if x == y :

print('x is equal to y')

elseif x > y :
print('x is greater than y')

elseif x < y :
print('x is less than y')

Answer
Error: Invalid syntax. Use elif in place of elseif

[D] If a = 10, b = 12, c = 0, find the values of the following expressions:
a != 6 and b > 5
a == 9 or b < 3
not (a < 10)
not (a > 5 and c)
5 and c != 8 or c
Answer
True
False
True
True
True
[E] Attempt the following:

a. Any integer is input through the keyboard. Write a program to find out
whether it is an odd number or even number.
Program
Determine whether number is odd or even
x = int(input('Enter any number: '))
j = 2
if x % j == 0 :

print('Even Number')
else :

print('Odd Number')
Output
Enter any number: 48
Even Number

b. Any year is input through the keyboard. Write a program to determine
whether the year is a leap year or not.
Program
Determine whether year is leap or not
year = int(input('Enter a year: '))
if year % 4 == 0 :

if year % 100 == 0 :
if year % 400 == 0 :

print(year, 'is a Leap Year')
else :

print(year, 'is not a Leap Year')
else :

print(year, 'is a Leap Year')
else :

print(year, 'is not a Leap Year')
Output
Enter a year: 1996
1996 is a Leap Year
Enter a year: 2000
2000 is a Leap Year
Enter a year: 1900
1900 is not a Leap Year

c. If ages of Ram, Shyam and Ajay are input through the keyboard, write a
program to determine the youngest of the three.
Program
Determine youngest out of three persons
ram_age = int(input('Enter Ram\'s age: '))
shyam_age = int(input('Enter Shyam\'s age: '))
ajay_age = int(input('Enter Ajay\'s age: '))
if ram_age < shyam_age and ram_age < ajay_age :

print('Youngest is Ram')
elif shyam_age < ram_age and shyam_age < ajay_age :

print('Youngest is Shyam')

elif ajay_age < ram_age and ajay_age < shyam_age :
print('Youngest is Ajay')

Output
Enter Ram's age: 23
Enter Shyam's age: 45
Enter Ajay's age: 34
Youngest is Ram

d. Write a program to check whether a triangle is valid or not, when the
three angles of the triangle are entered through the keyboard. A triangle
is valid if the sum of all the three angles is equal to 180 degrees.
Program
Determine whether triangle is valid or not
x = int(input('Enter angle no. 1: '))
y = int(input('Enter angle no. 2: '))
z = int(input('Enter angle no. 3: '))
sum_of_angles = x + y + z
if sum_of_angles == 180 :

print('Valid Triangle')
else :

print('Is not a Valid Triangle')
Output
Enter angle no. 1: 45
Enter angle no. 2: 45
Enter angle no. 3: 90
Valid Triangle

e. Write a program to find the absolute value of a number entered through
the keyboard.
Program
Obtain absolute value of a number
x = int(input('Enter any number: '))
if x < 0 :

y = x * (-1)
else :

y = x
print('Absolute value of', x, 'is', y)
Output
Enter any number: -20
Absolute value of -20 is 20
Enter any number: 23
Absolute value of 23 is 23

f. Given the length and breadth of a rectangle, write a program to find
whether the area of the rectangle is greater than its perimeter. For
example, the area of the rectangle with length = 5 and breadth = 4 is
greater than its perimeter.
Program
Determine whether area of rectangle is greater than its perimeter
length = int(input('Enter length of rectangle: '))
breadth = int(input('Enter breadth of rectangle: '))
area = length * breadth
perimeter = 2 * (length + breadth)
print('Area =', area, 'Perimeter =', perimeter)
if area > perimeter :

print('Area of Rectangle is greater than perimeter')
else :

print('Perimeter of Rectangle is greater than area')
Output
Enter length of rectangle: 4
Enter breadth of rectangle: 5
Area = 20 Perimeter = 18
Area of Rectangle is greater than perimeter
Enter length of rectangle: 2
Enter breadth of rectangle: 1
Area = 2 Perimeter = 6
Perimeter of Rectangle is greater than area

g. Given three points (x1, y1), (x2, y2) and (x3, y3), write a program to
check if all the three points fall on one straight line.

Program
Determine whether 3 points are collinear
x1 = int(input('Enter the co-ordinate of x1: '))
y1 = int(input('Enter the co-ordinate of y1: '))
x2 = int(input('Enter the co-ordinate of x2: '))
y2 = int(input('Enter the co-ordinate of y2: '))
x3 = int(input('Enter the co-ordinate of x3: '))
y3 = int(input('Enter the co-ordinate of y3: '))
if x1 == x2 and x2 == x3 :

print('Collinear')
elif x1 != x2 and x2 != x3 and x3 != x1 :

Calculate Slope of line between each pair of points
s1 = (float(abs(y2 - y1))) / (float(abs(x2 - x1)))
s2 = (float(abs(y3 - y2))) / (float(abs(x3 - x2)))
s3 = (float(abs(y3 - y1))) / (float(abs(x3 - x1)))
if s1 == s2 and s2 == s3 :

print('Collinear')
else :

print('Non Collinear')
Output
Enter the co-ordinate of x1: 4
Enter the co-ordinate of y1: 4
Enter the co-ordinate of x2: 5
Enter the co-ordinate of y2: 5
Enter the co-ordinate of x3: 6
Enter the co-ordinate of y3: 6
All the 3 points lies on the one straight line

h. Given the coordinates (x, y) of center of a circle and its radius, write a
program that will determine whether a point lies inside the circle, on the
circle or outside the circle. (Hint: Use sqrt() function)
Program
Determine whether point lies inside, outside or on the circle
import math

centerX = int(input('Enter X coord. of center of circle: '))
centerY = int(input('Enter Y coord. of center of circle: '))
radius = int(input('Enter radius of circle: '))
print('Enter coordinates of point:')
pointX = int(input('Enter X coord. of point: '))
pointY = int(input('Enter Y coord. of point: '))
xDiff = centerX - pointX ;
yDiff = centerY - pointY ;
distance = math.sqrt((xDiff * xDiff) + (yDiff * yDiff))
if distance == radius :

print('Point is on the circle')
elif distance < radius :

print('Point lies inside the circle')
else :

print('Point lies outside the circle')
Output
Enter X coord. of center of circle: 0
Enter Y coord. of center of circle: 0
Enter radius of circle: 5
Enter coordinates of point:
Enter X coord. of point: 5
Enter Y coord. of point: 0
Point is on the circle

i. Given a point (x, y), write a program to find out if it lies on the X- axis,
Y-axis or on the origin.
Program
Determine where a point lies in coordinate system
x = int(input('Enter X Coord of the point:'))
y = int(input('Enter Y coord of the point:'))
if x == 0 and y == 0 :

print('Point is the origin')
elif x == 0 and y != 0 :

print('Point lies on the Y axis')

elif x != 0 and y == 0 :
print('Point lies on the X axis')

else :
if x > 0 and y > 0 :

print('Point lies in the First Quadrant')
elif x < 0 and y > 0 :

print('Point lies in the Second Quadrant')
elif x < 0 and y < 0 :

print('Point lies in the Third Quadrant')
else :

print('Point lies in the Fourth Quadrant')
Output
Enter X Coord of the point:0

Enter Y coord of the point:0
Point is the origin

Enter X Coord of the point:-10
Enter Y coord of the point:-20
Point lies in the Third Quadrant

j. A year is entered through the keyboard, write a program to determine
whether the year is leap or not. Use the logical operators and and or.
Program
Determine whether year is leap or not

year = int(input('Enter a year: '))
if (year % 4 == 0 and year % 100 != 0) or year % 400 == 0 :

print(year, 'is a leap year')
else :

print(year, 'is not a leap year')
Output
Enter a year: 2016

2016 is a Leap Year
k. If the three sides of a triangle are entered through the keyboard, write a

program to check whether the triangle is valid or not. The triangle is
valid if the sum of two sides is greater than the largest of the three sides.

Program
Determine whether triangle is valid or not
s1 = int(input('Enter the 1st side of triangle: '))
s2 = int(input('Enter the 2nd side of triangle: '))
s3 = int(input('Enter the 3rd side of triangle: '))
if s1 + s2 <= s3 or s2 + s3 <= s1 or s1 + s3 <= s2 :

print('Invalid Triangle')
else :

print('Valid Triangle')
Output
Enter the 1st side of triangle: 6
Enter the 2nd side of triangle: 7
Enter the 3rd side of triangle: 10
Valid Triangle
Enter the 1st side of triangle: 5
Enter the 2nd side of triangle: 3
Enter the 3rd side of triangle: 12
Invalid Triangle

l. If the three sides of a triangle are entered through the keyboard, write a
program to check whether the triangle is isosceles, equilateral, scalene or
right-angled triangle.
Program
Determine the type of triangle
s1 = int(input('Enter the 1st side of triangle: '))
s2 = int(input('Enter the 2nd side of triangle: '))
s3 = int(input('Enter the 3rd side of triangle: '))
if s1 + s2 <= s3 or s2 + s3 <= s1 or s1 + s3 <= s2 :

print('The sides do not form a triangle')
else :

if s1 != s2 and s2 != s3 and s3 != s1 :
print('Scalene triangle')

if s1 == s2 and s2 != s3 :
print('Isosceles triangle')

if s2 == s3 and s3 != s1 :
print('Isosceles triangle')

if s1 == s3 and s3 != s2 :
print('Isosceles triangle')

if s1 == s2 and s2 == s3 :
print('Equilateral triangle')

a = (s1 * s1) == (s2 * s2) + (s3 * s3)
b = (s2 * s2) == (s1 * s1) + (s3 * s3)
c = (s3 * s3) == (s1 * s1) + (s2 * s2)
if a or b or c :

print('Right-angled triangle')
Output
Enter the 1st side of triangle: 6
Enter the 2nd side of triangle: 8
Enter the 3rd side of triangle: 10
Scalene triangle
Right-angled triangle
Enter the 1st side of triangle: 3
Enter the 2nd side of triangle: 3
Enter the 3rd side of triangle: 3
Equilateral triangle
Enter the 1st side of triangle: 5
Enter the 2nd side of triangle: 3
Enter the 3rd side of triangle: 12
The sides do not form a triangle

[A] Answer the following:

a. When does the else block of a while loop go to work?
Answer
Else block is optional. If present, it is executed when condition fails.

b. Can range() function be used to generate numbers from 0.1 to 1.0 in
steps of 0.1?
Answer
No. range() function cannot generate float numbers.

c. Can a while loop be nested within a for loop and vice versa?
Answer
Yes a while loop can be nested within a for loop and vice versa.

d. Can a while/for loop be used in an if/else and vice versa?
Answer
Yes a while/for loop be used in an if/else and vice versa.

e. Can a do-while loop be used to repeat a set of statements?
Answer
There is no do-while loop in Python.

f. How will you write an equivalent for loop for the following?
count = 1
while count <= 10 :

print(count)

count = count + 1
Answer
for count in range(1, 11) :

print(count)
g. What will be the output of the following code snippet?

for index in range(20, 10, -3) :
print(index, end = ' ')

Answer
20 17 14 11

h. Why should break and continue be always used with an if embedded in
a while or for loop?
Answer
If used without if, break would terminate the loop during first iteration
itself.
If continue is used without if, the statements below it would never get
executed.

[B] Point out the errors, if any, in the following programs:

a. j = 1
while j <= 10 :

print(j)
j++

Answer
Error. We cannot increment j using j++, as there is no incrementation
operator in Python. Instead, use either j = j + 1 or j += 1.

b. while true :
print('Infinite loop')

Answer
Error. Use True instead of true.

c. lst = [10, 20, 30, 40, 50]
for count = 1 to 5 :

print(lst[i])
Answer
Error. Wrong usage of for loop. We should have used"
for num in lst :

print(num)
d. i = 15

not while i < 10 :
print(i)
i -= 1

Answer
Error. Improper use of while. We should have used:
while i >= 10 :

e. # Print alphabets from A to Z
for alpha in range(65, 91) :

print(ord(alpha), end=' ')
Answer
Error. Instead of ord() use chr() function to print character
corresponding to ASCII value.

f. for i in range(0.1, 1.0, 0.25) :
print(i)

Answer
Error. range() function cannot be used to generate a sequence of floats.

g. i = 1
while i <= 10 :

j = 1
while j <= 5 :

print(i, j)
j += 1
break

print(i, j)
i += 1

Answer

No error.

[C] Match the following pairs for the values eachrange() function will
generated when used in a for loop.

a. range(5) 1. 1, 2, 3, 4

b. range(1, 10, 3) 2. 0, 1, 2, 3, 4

c. range(10, 1, -2) 3. Nothing

d. range(1, 5) 4. 10, 8, 6, 4, 2

e. range(-2) 5. 1, 4, 7

Answer
range(5) - 0, 1, 2, 3, 4
range(1, 10, 3) - 1, 4, 7
range(10, 1, -2) - 10, 8, 6, 4, 2
range(1, 5) - 1, 2, 3, 4, 5
range(-2) - Nothing

[D] Attempt the following:

a. Write a program to print first 25 odd numbers using range().
Program
Generate first 25 odd numbers
j = 1
print('First 25 Odd Numbers:')
for i in range(50) :

if i % j == 1 :
print(i, end = ', ')

i += 1
Output
First 25 Odd Numbers:
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49,

b. Rewrite the following program using for loop.
lst = ['desert', 'dessert', 'to', 'too', 'lose', 'loose']
s = 'Mumbai'
i = 0
while i < len(lst) :

if i > 3 :
break

else :
print(i, lst[i], s[i])
i += 1

Program
Rewrite using for loop
lst = ['desert','dessert','to','too','lose','loose']
s = 'Mumbai'
i = 0
for i, ele in enumerate(lst) :
if i > 3 :

break
print(i, ele, s[i])

Output
0 desert M
1 dessert u
2 to m
3 too b

c. Write a program to count the number of alphabets and number of digits
in the string 'Nagpur-440010'.
Program
Count alphabets, digits and special symbols in a string
string = 'Nagpur-440010'
alphabets = digits = special = 0
for i in range(len(string)) :

if(string[i].isalpha()) :
alphabets = alphabets + 1

elif(string[i].isdigit()) :
digits = digits + 1

else :
special = special + 1

print('Number of Alphabets =', alphabets)
print('Number of Digits =', digits)
print('Number of Special Characters =', special)
Output
Number of Alphabets = 6
Number of Digits = 6
Number of Special Characters = 1

d. A five-digit number is entered through the keyboard. Write a program to
obtain the reversed number and to determine whether the original and
reversed numbers are equal or not.
Program
Reverse a 5-digit number and compare with original
num = int(input('Enter a 5-digit number: '))
orinum = num
revnum = 0
while(num > 0) :

rem = num % 10
revnum = (revnum * 10) + rem
num = num // 10

print('Original number =', orinum)
print('Reversed number = ', revnum)
if orinum == revnum :

print('Original and reversed numbers are same')
else :

print('Original and reversed numbers are different')
Output
Enter a 5-digit number: 12345
Original number = 12345
Reversed number = 54321

Original and reversed number are different
Enter a 5-digit number: 12221
Original number = 12221
Reversed number = 12221
Original and reversed numbers are same

e. Write a program to find the factorial value of any number entered
through the keyboard.
Program
number = int(input('Enter a number: '))
fact = 1
for i in range(1, number + 1) :

fact = fact * i
print('Factorial value = ', fact)
Output
Enter a number: 5
Factorial value = 120

f. Write a program to print out all Armstrong numbers between 1 and 500.
If sum of cubes of each digit of the number is equal to the number itself,
then the number is called an Armstrong number. For example, 153 = (1
* 1 * 1) + (5 * 5 * 5) + (3 * 3 * 3).
Program
print('Armstrong numbers between 1 and 500 are:')
for num in range(1, 501) :

n = num
d3 = n % 10
n = int(n / 10)
d2 = n % 10
n = int(n / 10)
d1 = n % 10
if d1 * d1 * d1 + d2 * d2 * d2 + d3 * d3 * d3 == num :

print(num)
Output
Armstrong numbers between 1 and 500 are:

1
153
370
371
407

g. Write a program to print all prime numbers from 1 to 300.
Program
lower = 1
upper = 300
print('All Prime numbers from 1 to 300:')
for num in range(lower, upper + 1) :

for n in range(2, num) :
if (num % n) == 0 :

break
else :

print(num, end = ', ')
Output
All Prime numbers from 1 to 300:
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293,

h. Write a program to print the multiplication table of the number entered
by the user. The table should get displayed in the following form:
29 * 1 = 29
29 * 2 = 58
…
Program
num = int(input('Enter any number: '))
lower = 1
upper = 10
for i in range(lower, upper + 1) :

print(num, 'x', i, '=', num * i)

Output
Enter any number: 29
29 x 1 = 29
29 x 2 = 58
29 x 3 = 87
29 x 4 = 116
29 x 5 = 145
29 x 6 = 174
29 x 7 = 203
29 x 8 = 232
29 x 9 = 261
29 x 10 = 290

i. When interest compounds q times per year at an annual rate of r % for n
years, the principal p compounds to an amount a as per the following
formula:
a = p (1 + r / q) nq

Write a program to read 10 sets of p, r, n & q and calculate the
corresponding as.
Program
for i in range(10) :

p = float(input('Enter value of p: '))
r = float(input('Enter value of r: '))
n = float(input('Enter value of n: '))
q = float(input('Enter value of q: '))
a = p * ((1 + r / 100 / q) ** (n * q))
print('Compound Interest = Rs.', a)

Output
Enter value of p: 1000
Enter value of r: 5
Enter value of n: 3
Enter value of q: 4
Compound Interest = Rs. 1160.7545177229981
…

j. Write a program to generate all Pythagorean Triplets with side length
less than or equal to 30.
Program
n = 31
for i in range(1, n) :

for j in range((i + 1), (n + 1), 1) :
t = (i * i) + (j * j)
for k in range((i + 2), (n + 1), 1) :

if (t == k * k) :
print(i, j, k)

Output
3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
10 24 26
12 16 20
15 20 25
18 24 30
20 21 29

k. Population of a town today is 100000. The population has increased
steadily at the rate of 10 % per year for last 10 years. Write a program to
determine the population at the end of each year in the last decade.
Program
population = 100000
for i in range(10) :

population += int(population * 10 / 100)
print('Year', i + 1, ':', population)

Output
Year 1 : 110000
Year 2 : 121000

Year 3 : 133100
Year 4 : 146410
Year 5 : 161051
Year 6 : 177156
Year 7 : 194871
Year 8 : 214358
Year 9 : 235793
Year 10 : 259372

l. Ramanujan number is the smallest number that can be expressed as sum
of two cubes in two different ways. Write a program to print all such
numbers up to a reasonable limit.
Program
print('Ramanujan Numbers:')
for i in range(1, 31):

for j in range(1, 31):
for k in range(1, 31):

for l in range(1, 31):
if (i != j and i != k and i != l) and (j != k and j != l) and (k != l) :

if i * i * i + j * j * j == k * k * k + l * l * l :
print(i, j, k, l)

Output

m. Write a program to print 24 hours of day with suitable suffixes like AM,
PM, Noon and Midnight.
Program
for hour in range(24) :

if hour == 0 :
print('12 Midnight')
continue

if hour < 12 :

print(hour, 'AM')
if hour == 12 :

print('12 Noon')
if hour > 12 :

print(hour % 12, 'PM')
Output
12 Midnight
1 AM
2 AM
.. ..

[A] Attempt the following:

a. How will you make the following code more compact?
print('Enter ages of 3 persons')
age1 = input()
age2 = input()
age3 = input()
Answer
age1, age2, age3 = input('Enter 3 values: ').split(',')

b. How will you print "Rendezvous" in a line and retain the cursor in the
same line in which the output has been printed?
Answer
print('Rendezvous', end = '')

c. What will be the output of the following code snippet?
l, b = 1.5678, 10.5
print('length = {l} breadth = {b}')
Output
length = {l} breadth = {b}

d. In the following statement what do > 5, > 7 and > 8 signify?
print(f'{n:>5}{n ** 2:>7}{n ** 3:>8}')
Output
n > 5 indicates that value of n be printed right-justified in 5 columns.
Similarly, n ** 2:>7 indicates that value of n ** 2 be printed right-

justified within 7 columns.
e. What will be the output of the following code segment?

name = 'Sanjay'
cellno = 9823017892
print(f'{name:15} : {cellno:10}')
Output
Sanjay 9823017892

f. How will you print the output of the following code segment using
fstring?
x, y, z =10, 20, 40
print('{0:<5}{1:<7}{2:<8}'.format(x, y, z))
Output
print(f'{x:<5}{y:<7}{z:<8}')

g. How will you receive arbitrary number of floats from keyboard?
Output
numbers = [float(x) for x in input('Enter values: ').split()]
for n in numbers :

print(n + 10)
h. What changes should be made in

print(f'{'\nx = ':4}{x:>10}{'\ny = ':4}{y:>10}')
to produce the output given below:
x = 14.99
y = 114.39
Output
print(f'{x = :>10}\n{y = :>10}')

i. How will you receive a boolean value as input?
Output
b = bool(input('Enter boolean value: '))

j. How will you receive a complex number as input?
Output

c = complex(input('Enter complex value: '))
k. How will you display price in 10 columns with 4 places beyond decimal

points? Assume value of price to be 1.5567894.
Output
price = 1.5567894
print(f'{price =:10.4}')

l. Write a program to receive an arbitrary number of floats using one
input() statement. Calculate the average of floats received.
Program
Receive arbitrary number of floats
num = int(input('How many numbers do you wish to input: '))
totalsum = 0
number = [float(x) for x in input('Enter all numbers: ').split()]
for n in range(len(number)) :

totalsum = totalsum + number[n]
avg = totalsum / num
print('Average of', num, 'numbers is:', avg)
Output
How many numbers do you wish to input: 5
Enter all numbers: 10 20 30 40 50
Average of 5 numbers is: 30.0

m. Write a program to receive the following using one input() statement.
Name of the person
Years of service
Diwali bonus received
Calculate and print the agreement deduction as per the following
formula:
deduction = 2 * years of service + bonus * 5.5 / 100
Program
data = input('Name, year of service, diwali bonus: ').split(',')
name = data[0]
yos = int(data[1])

bonus = float(data[2])
deduction = float((2 * yos + bonus * 5.5) / 100)
print('Deduction = Rs.', deduction)
Output
Name, year of service, diwali bonus: Ramesh, 3, 9500 Deduction = Rs.
522.56

n. Which import statement should be added to use the built-in functions
input() and print()?
Answer
No import statement is needed to use input() and print() as they are
global functions which are available everywhere..

o. Is the following statement correct?
print('Result = ' + 4 > 3)
Answer
No. String cannot be contactenated with a bool value. Correct form
would be:
print('Result = ' + str(4 > 3))

p. Write a program to print the values
a = 12.34, b = 234.39, c = 444.34, d = 1.23, e = 34.67
as shown below:
a = 12.34
b = 234.39
c = 444.34
d = 1.23
e = 34.67
Program
a, b, c, d, e = 12.34, 234.39, 444.34, 1.23, 34.67
print(f'a = {a:>10}')
print(f'b = {b:>10}')
print(f'c = {c:>10}')
print(f'd = {d:>10}')
print(f'e = {e:>10}')

Output
a = 12.34
b = 234.39
c = 444.34
d = 1.23
e = 34.67

[B] Match the following:

a. Default value of sep in print() 1. ' '

b. Default value of end in print() 2. Using fstring

c. Easiest way to print output 3. Right justify num in 5 columns

d. Return type of split() 4. Left justify num in 5 columns

e. print('{num:>5}') 5. str

f. print('{num:<5}') 6. \n

Answer
Default value of sep in print() - ' '
Default value of end in print() - \n
Easiest way to print output - Using fstring
Return type of split() - str
print('{num:>5}') - Right justify num in 5 columns
print('{num:<5}') - Left justify num in 5 columns

[A] What will be the output of the following programs?

a. msg = list('www.kicit.com')
ch = msg[-1]
print(ch)
Answer
m

b. msg = list('kanlabs.teachable.com')
s = msg[4:6]
print(s)
Answer
['a', 'b']

c. msg = 'Online Courses - KanLabs'
s = list(msg[:3])
print(s)
Answer
['O', 'n', 'l']

d. msg = 'Rahate Colony'
s = list(msg[-5:-2])
print(s)
Answer
['o', 'l', 'o']

e. s = list('KanLabs')

t = s[::-1]
print(t)
Answer
['s', 'b', 'a', 'L', 'n', 'a', 'K']

f. num1 = [10, 20, 30, 40, 50]
num2 = num1
print(id(num1))
print(type(num2))
print(isinstance(num1, list))
print(num1 is num2)
Answer
40423528
<class 'list'>
True
True

g. num = [10, 20, 30, 40, 50]
num[2:4] = []
print(num)
Answer
[10, 20, 50]

h. num1 = [10, 20, 30, 40, 50]
num2 = [60, 70, 80]
num1.append(num2)
print(num1)
Answer
[10, 20, 30, 40, 50, [60, 70, 80]]

i. lst = [10, 25, 4, 12, 3, 8]
sorted(lst)
print(lst)
Answer
[10, 25, 4, 12, 3, 8]

j. a = [1, 2, 3, 4]

b = [1, 2, 5]
print(a < b)
Answer
True

[B] Attempt the following questions:

a. Which of the following is a valid List?
['List'] {"List"} ("List") "List"
Answer
['List']

b. What will happen on execution of the following code snippet?
s = list('Hello')
s[1] = 'M'
Answer
The element 'e' in the list s would be replaced by 'M'.

c. The following code snippet deletes elements 30 and 40 from the list:
num = [10, 20, 30, 40, 50]
del(num[2:4])
In which other way can the same effect be obtained?
Answer
num[2:4] = []

d. Which of the following is an INCORRECT list?
a = [0, 1, 2, 3, [10, 20, 30]]
a = [10, 'Suraj', 34555.50]
a = [[10, 20, 30], [40, 50, 60]]
Answer
None. All lists are correct. A list can contain dissimilar elements.

e. From the list given below
num1 = [10, 20, 30, 40, 50]
How will you create the list num2 containing:

['A', 'B', 'C', 10, 20, 30, 40, 50, 'Y', 'Z']
Answer
num1 = [10, 20, 30, 40, 50]
num2 = ['A', 'B', 'C', *num1, 'Y', 'Z']

f. Given a list
lst = [10, 25, 4, 12, 3, 8]
How will you sort it in descending order?
Answer
lst.sort(reverse = True)

g. Given a list
lst = [10, 25, 4, 12, 3, 8]
How will you check whether 30 is present in the list or not?
Answer
print(30 in lst)

h. Given a list
lst = [10, 25, 4, 12, 3, 8]
How will you insert 30 between 25 and 4?
Answer
lst.insert(2, 30)

i. Given a string
s = 'Hello'
How will you obtain a list ['H', 'e', 'l', 'l', 'o'] from it?
Answer
lst = list(s)

[C] Answer the following:

a. Write a program to create a list of 5 odd integers. Replace the third
element with a list of 4 even integers. Flatten, sort and print the list.
Program
Modify, flatten and sort list

x = [1, 3, 5, 7, 9]
y = [2, 4, 6, 8]
x[2] = y
print(x)
x = x[:2] + [*y] + x[3:]
print(x) x.sort()
print(x)
Output
[1, 3, [2, 4, 6, 8], 7, 9]
[1, 3, 2, 4, 6, 8, 7, 9]
[1, 2, 3, 4, 6, 7, 8, 9]

b. Suppose a list contains 20 integers generated randomly. Receive a
number from the keyboard and report position of all occurrences of this
number in the list.
Program
Report number of occurrences of a number in the list
import random
lst = []
for k in range(20) :

n = random.randint(0, 50)
lst.append(n)

print(lst)
num = int(input('Enter number: '))
for i in range(len(lst)) :

if lst[i] == num:
print('Number found at position:', i)

Output
[44, 4, 22, 11, 36, 29, 38, 32, 14, 34, 48, 49, 4, 14, 23, 5, 28, 43, 49, 3]
Enter number: 14
Number found at position: 8
Number found at position: 13

c. Suppose a list has 20 numbers. Write a program that removes all
duplicates from this list.

Program
Remove duplicates in a list
lst = [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 10, 20, 68, 8, 40, 45, 1, 5, 53, 45, 17]
print('Original list: ', lst)
final_lst=[]
for num in lst :

if num not in final_lst :
final_lst.append(num)

lst = final_lst
print('List after removing duplicates:', lst)
Output
Original list: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 10, 20, 68, 8, 40, 45, 1, 5, 53, 45,
17]
List after removing duplicates: [1, 2, 3, 4, 5, 10, 20, 68, 8, 40, 45, 53, 17]

d. Suppose a list contains positive and negative numbers. Write a program
to create two lists-one containing positive numbers and another
containing negative numbers.
Program
Separate positive and negative numbers into two lists
lst1 = [1, -9, -6, -45, -78,-1, 2, 3, 4, 5]
lst2 = []
lst3 = []
count, ncount = 0, 0
for num in lst1 :

if num >= 0 :
lst2.append(num)

else :
lst3.append(num)

print('Original list:', lst1)
print('Positive numbers list:', lst2)
print('Negative numbers list:', lst3)
Output
Original list: [1, -9, -6, -45, -78, -1, 2, 3, 4, 5]

Positive numbers list: [1, 2, 3, 4, 5]
Negative numbers list: [-9, -6, -45, -78, -1]

e. Suppose a list contains 5 strings. Write a program to convert all these
strings to uppercase.
Program
Converts strings in a list to uppercase
lst = ['abc', 'def', 'ghi', 'jkl', 'lmn']
for i, item in enumerate(lst) :

lst[i] = item.upper()
print(lst)
Output
['ABC', 'DEF', 'GHI', 'JKL', 'LMN']

f. Write a program that converts list of temperatures in Fahrenheit degrees
to equivalent Celsius degrees.
Program
Conver farhrenheit temperatures in list into centigrade
fahr = [212, 120, 100, 93, 37]
for i, f in enumerate(fahr) :

c = int(5 / 9 * (f - 32))
fahr[i] = c
print(f, c)

print(fahr)
Output
212 100
120 48
100 37
93 33
37 2
[100, 48, 37, 33, 2]

g. Write a program to obtain a median value of a list of numbers, without
disturbing the order of the numbers in the list.
Program

Obtain median of a list
num = [1, 2, 3, 4, 5, 6, 7]
n = len(num)
if n % 2 == 0 :

i = int(n / 2 - 1)
j = int(n / 2)
median = (num[i] + num[j]) / 2

else :
i = int(n / 2)
median = num[i]

print('Median value =', median)
Output
Median value = 4

h. A list contains only positive and negative integers. Write a program to
obtain the number of negative numbers present in the list, without using
a loop.
Program
Count negatives in a list without using a loop
lst = [1, 2, 3, 4, 5, -1, -2, -3, -4, -5]
if 0 not in lst :

lst.append(0)
lst = sorted(lst)
pos = lst.index(0)
print('Number of negative numbers in the list =', pos)
Output
Number of negative numbers in the list = 5

i. Suppose a list contains several words. Write a program to create another
list that contains first character of each word present in the first list.
Program
msg = ['Dialogue', 'is', 'dead', 'Chatalogue', 'is', 'in']
abbrmsg = []
for word in msg :

abbrmsg.append(word[0])

print(abbrmsg)
Out put
['D', 'i', 'd', 'C', 'i', 'i']

j. A list contains 10 numbers. Write a program to eliminate all duplicates
from the list.
Program
Eliminate all duplicates from the list
lst1= [1, 2, 1, 3, 4, 5, 6, 5, 2, 4]
lst2 = []
print('Original list =', lst1)
for i in lst1 :

if i not in lst2 :
lst2.append(i)

print('List after eliminating duplicates =', lst2)
Output
[1, 2, 3, 4, 5, 6]

k. Write a program to find the mean, median and mode of a list of 10
numbers.
Program
Find the Mean, Median, Mode in a list of 10 numbers
lst = [10, 20, 30, 40, 30, 60, 70, 30, 80, 30]
Mean
n = len(lst)
lst_sum = sum(lst)
mean = lst_sum / n
Median
n = len(lst)
lst.sort()
if n % 2 == 0 :

median1 = lst[n // 2]
median2 = lst[n // 2 - 1]
median = (median1 + median2) / 2

else :

median = lst[n // 2]
Mode
lst1 = [0, 0]
for num in lst :

occ = lst.count(num)
if occ > lst1[0] :

lst1 = [occ, num]
print('List =', lst)
print('Mean =', mean)
print('Median =', median)
print('Mode =', lst1[1])
Output
List = [10, 20, 30, 30, 30, 30, 40, 60, 70, 80]
Mean = 40.0
Median = 30.0
Mode = 30

[A] Which of the following properties apply to string, list and tuple?
- Iterable
- Sliceable
- Indexable
- Immutable
- Sequence
- Can be empty
- Sorted collection
- Ordered collection
- Unordered collection
- Elements can be accessed using their position in the collection
Answer
Iterable - string, list and tuple
Sliceable - string, list and tuple
Indexable - string, list and tuple
Immutable - string, tuple
Sequence - string, list and tuple
Can be empty - string, list and tuple
Sorted collection - none
Ordered collection - string, list and tuple
Unordered collection - set
Elements can be accessed using their position in the collection - string, list
and tuple

[B] Which of the following operations can be performed on string, list and
tuple?
- a = b + c
- a += b
- Appending a new element at the end
- Deletion of an element at the 0th position
- Modification of last element
- In place reversal
Answer
a = b + c - string, list and tuple
a += b - string, list and tuple
Appending a new element at the end - list
Deletion of an element at the 0th position - list
Modification of last element - string, list and tuple
In place reversal - list

[C] Answer the following:

a. Is this a valid tuple?
tpl = ('Square')
Answer
No. Correct way to create the tuple would
be tpl = ('Square',)

b. What will be the output of the following code snippet?
num1 = num2 = (10, 20, 30, 40, 50)
print(id(num1), type(num2))
print(isinstance(num1, tuple))
print(num1 is num2)
print(num1 is not num2)
print(20 in num1)
print(30 not in num2)
Program
40291816 <class 'tuple'>
True

True
False
True
False

c. Suppose a date is represented as a tuple (d, m, y). Write a program to
create two date tuples and find the number of days between the two
dates.
Program
Determine number of days between two dates
dt1 = (17, 3, 1998)
dt2 = (17, 4, 2011)
d1, m1, y1 = dt1[0], dt1[1], dt1[2]
d2, m2, y2 = dt2[0], dt2[1], dt2[2]
days1 = [31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
days2 = [31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
ndays1 = (y1 - 1) * 365
ldays1 = ((y1 - 1) // 4) - ((y1 - 1) // 100) + ((y1 - 1) // 400)
tdays1 = ndays1 + ldays1
if((y1 % 4 == 0 and y1 % 100 != 0) or (y1 % 400 == 0)) :

days1[1] = 29
else :

days1[1] = 28
s1 = sum(days1[0:m1 - 1])
tdays1 += s1
ndays2 = (y2 - 1) * 365
ldays2 = ((y2 -1) // 4) - ((y2 - 1) // 100) + ((y2 - 1) // 400)
tdays2 = ndays2 + ldays2
if((y2 % 4 == 0 and y2 % 100 != 0) or (y2 % 400 == 0)) :

days2[1] = 29
else :

days2[1] = 28
s2 = sum(days2[0:m2 - 1])
tdays2 += s2

diff = tdays2 - tdays1
print('Difference in days = ', diff)
Output
Difference in days = 4779

d. Create a list of tuples. Each tuple should contain an item and its price in
float. Write a program to sort the tuples in descending order by price.
Hint: Use operator.itemgetter().
Program
import operator
lst = [('Key', 101.25), ('Lock', 320.85), ('Hammer', 100.55),
('Spanner', 67.77), ('Tong', 93.03)]
print(sorted(lst, reverse = True, key = operator.itemgetter(1)))
Output
[('Lock', 320.85), ('Key', 101.25), ('Hammer', 100.55), ('Tong', 93.03),
('Spanner', 67.77)]

e. Store the data about shares held by a user as tuples containing the
following information about shares:
Share name
Date of purchase
Cost price
Number of shares
Selling price
Write a program to determine:
- Total cost of the portfolio.
- Total amount gained or lost.
- Percentage profit made or loss incurred.
Program
lst = [] i
= 0
num_companies = int(input('Enter no. of companies: '))
for i in range(num_companies):

name = input('Enter name: ')

no_of_shares = int(input('Enter no of shares: '))
dt_of_pur = input('Enter date of purchase: ')
cost_price = int(input('Enter Cost price: '))
selling_price = int(input('Enter selling price: '))
tpl = (name, no_of_shares, dt_of_pur, cost_price, selling_price)
lst.append(tpl)

tot = 0
gaintot = 0
losstot = 0
for l in lst :

no_of_shares = l[1]
cost_price = l[3]
selling_price = l[4]
cop = int(no_of_shares * cost_price)
tot = tot + cop

if selling_price > cost_price :
gaintot += (selling_price - cost_price) * no_of_shares

else :
losstot += (cost_price - selling_price) * no_of_shares

print(f'Total cost of portfolio:{tot:.2f}')
if gaintot > losstot :

net = gaintot - losstot
gain_per = net / tot * 100
print(f'Net amount gained:{net:.2f}')
print(f'Percentage profit:{gain_per:.2f}')

else :
net = losstot - gaintot
loss_per = net / tot * 100
print(f'Net amount lost:{net:.2f}')
print(f'Percentage loss:{loss_per:.2f}')

Output
Enter no. of companies: 3
Enter name: L and T
Enter no of shares: 100

Enter date of purchase: 12/12/2012
Enter Cost price: 145
Enter selling price: 186
Enter name: Tata Motors
Enter no of shares: 120
Enter date of purchase: 13/11/2016
Enter Cost price: 785
Enter selling price: 678
Enter name: Infosys
Enter no of shares: 90
Enter date of purchase: 14/05/2018
Enter Cost price: 775
Enter selling price: 800
Total cost of portfolio: 178450.00
Net amount lost: 6490.00
Percentage loss: 3.64

f. Write a program to remove empty tuple from a list of tuples.
Program
lst1= [(), ('Paras', 5), ('Ankit', 11), (), ('Harsha', 115), ('Aditya', 115), (),
('Aditi', 3), ()]
lst2 = []
for item in lst1 :

if len(item) != 0 :
lst2.append(item)

print(lst2)
Output
[('Paras', 5), ('Ankit', 11), ('Harsha', 115), ('Aditya', 115), ('Aditi', 3)]

g. Write a program to create following 3 lists:
- a list of names
- a list of roll numbers
- a list of marks
Generate and print a list of tuples containing name, roll number and
marks from the 3 lists. From this list generate 3 tuples-one containing all

names, another containing all roll numbers and third containing all
marks.
Program
name = ['Aditi', 'Mrunal', 'Aditya', 'Girish', 'Ankit', 'Meenal']
rollno = ['12', '43', '45', '50', '66', '21']
marks = ['90', '45', '82', '75', '95', '65']
t1 = tuple(name)
t2 = tuple(rollno)
t3 = tuple(marks)
lst = [t1, t2, t3]
print(lst)
print(t1)
print(t2)
print(t3)
Output
[('Aditi', 'Mrunal', 'Aditya', 'Girish', 'Ankit', 'Meenal'), ('12', '43', '45', '50',
'66', '21'), ('90', '45', '82', '75', '95', '65')]
('Aditi', 'Mrunal', 'Aditya', 'Girish', 'Ankit', 'Meenal')
('12', '43', '45', '50', '66', '21')
('90', '45', '82', '75', '95', '65')

[D] Match the following for the values each range() function will
generated when used in a for loop.

a. tpl1 = ('A',) 1. tuple of length 6

b. tpl1 = ('A') 2. tuple of lists

c. t = tpl[::-1] 3. Tuple

d. ('A', 'B', 'C', 'D') 4. list of tuples

e. [(1, 2), (2, 3), (4, 5)] 5. String

f. tpl = tuple(range(2, 5)) 6. Sorts tuple

g. ([1, 2], [3, 4], [5, 6]) 7. (2, 3, 4)

h. t = tuple('Ajooba') 8. tuple of strings

i. [*a, *b, *c] 9. Unpacking of tuples in a list

j. (*a, *b, *c) 10. Unpacking of lists in a tuple

Answer
tpl1 = ('A',) - Tuple
tpl1 = ('A') - String
t = tpl[::-1] - Sorts tuple
('A', 'B', 'C', 'D') - tuple of strings
[(1, 2), (2, 3), (4, 5)] - list of tuples
tpl = tuple(range(2, 5)) - (2, 3, 4)
([1, 2], [3, 4], [5, 6]) - tuple of lists
t = tuple('Ajooba') - tuple of length 6
[*a, *b, *c] - Unpacking of tuples in a list
(*a, *b, *c) - Unpacking of lists in a tuple

[A] What will be the output of the following programs?

a. s = {1, 2, 3, 7, 6, 4}
s.discard(10)
s.remove(10)
print(s)
Output
Element 10 is not present in set s.discard() would do nothing, whereas,
remove() would report an error.

b. s1 = {10, 20, 30, 40, 50}
s2 = {10, 20, 30, 40, 50}
print(id(s1), id(s2))
Output
40530296 40530184

c. s1 = {10, 20, 30, 40, 50}
s2 = {10, 20, 30, 40, 50}
s3 = {*s1, *s2}
print(s3)
Output
{40, 10, 50, 20, 30}

d. s = set('KanLabs')
t = s[::-1]
print(t)
Output

Error: set is not a subscriptable object. In other words [] cannot be used
with a set.

e. num = {10, 20, {30, 40}, 50}
print(num)
Output
Error: Nested sets are illegal.

f. s = {'Tiger', 'Lion', 'Jackal'}
del(s)
print(s)
Output
Error: name 's' is not defined. This happens because del() deletes the set
object.

g. fruits = {'Kiwi', 'Jack Fruit', 'Lichi'}
fruits.clear()
print(fruits)
Output
set() . After calling clear(), fruits becomes an empty set.

h. s = {10, 25, 4, 12, 3, 8}
s = sorted(s)
print(s)
Output
[3, 4, 8, 10, 12, 25]

i. s = { }
t = {1, 4, 5, 2, 3}
print(type(s), type(t))
Output
<class 'dict'> <class 'set'>

[B] Answer the following:

a. A set contains names which begin either with A or with B. write a
program to separate out the names into two sets, one containing names
beginning with A and another containing names beginning with B.

Program
Split given set into two sets
lst = {'Aditya', 'Aditi', 'Ankita', 'Aniket', 'Anuja', 'Bhushan', 'Bahu', 'Bali',
'Bhoomi', 'Babhoti' }
t = set()
s = set()
for item in lst :

if item.startswith('A') :
t.add(item)

elif item.startswith('B') :
s.add(item)

print(s)
print(t)
Output
{'Bhoomi', 'Bahu', 'Babhoti', 'Bali', 'Bhushan'}
{'Anuja', 'Ankita', 'Aditya', 'Aniket', 'Aditi'}

b. Create an empty set. Write a program that adds five new names to this
set, modifies one existing name and deletes two names existing in it.
Program
Set operations
s = set()
s.add('Amol')
s.add('Priya')
s.add('Mira')
s.add('Dipti')
s.add('Anil')
print('After adding 5 names:', s)
s.remove('Anil')
s.add('ANIL')
print('After modifying Anil:', s)
s.remove('Dipti')
s.remove('Mira')
print('After deleting Dipti and Mira:', s)
Output

After adding 5 names: {'Priya', 'Dipti', 'Anil', 'Mira', 'Amol'} After
modifying Anil: {'Priya', 'ANIL', 'Dipti', 'Mira', 'Amol'}
After deleting Dipti and Mira: {'Priya', 'ANIL', 'Amol'}

c. What is the difference between the two set functions- discard() and
remove().
Answer
remove() raises an exception when the element which we are trying to
remove is not present in the set, whereas, discard() doesn't.

d. Write a program to create a set containing 10 randomly generated
numbers in the range 15 to 45. Count how many of these numbers are
less than 30. Delete all numbers which are greater than 35.
Program
Set operations
import random
s = set()
while True :

s.add(random.randint(15, 45))
if len(s) == 10 :

break
print('Oringal set:', s)
t = set()
count = 0
for item in s :

if item < 30 :
count += 1

if item <= 35 :
t.add(item)

s = t
print('Count of nos. less than 30:', count)
print('Set after deleting elements > 35: ', s)
Output
Oringal set: {32, 34, 40, 15, 16, 22, 23, 24, 25, 27}
Count of nos. less than 30: 7

Set after deleting elements > 35: {32, 34, 15, 16, 22, 23, 24, 25, 27}
e. What do the following set operators do?

|, &, ^, -
Answer
| Union of two sets
& Intersection of two sets
^ Symmetric difference between two sets
- Difference between two sets

f. What do the following set operators do?
|=, &=, ^=, -=
Answer
|= performs union of two sets and stores the result in left operand.
&= performs intersection of two sets and stores result in left operand.
^= Finds symmetric difference between two sets and stores result in left
operand.
-= Finds difference between two sets and stores result in left operand.

g. How will you remove all duplicate elements present in a string, a list and
a tuple?
Answer
Delete duplicates from string, list and tuple
s = 'Razmattaz'
s = ''.join(sorted(set(s), key = s.index))
print(s)
lst = ['R', 'a', 'a', 'z', 'm', 'a', 't', 't', 'a', 'z']
lst = list(sorted(set(lst), key = lst.index))
print(lst)
tpl = ('R', 'a', 'a', 'z', 'm', 'a', 't', 't', 'a', 'z')
tpl = tuple(sorted(set(tpl), key = tpl.index))
print(tpl)
Output
Razmt

['R', 'a', 'z', 'm', 't']
('R', 'a', 'z', 'm', 't')

h. Which operator is used for determining whether a set is a subset of
another set?
Answer
The '<' operator is used to determine whether a set is a subset of another
set. Corresponding method is issubset(), which gives the same result.
s = {12, 15, 13, 23, 22, 16, 17}
t = {13, 15, 22}
print(t.issubset(s)) # print True
print(t < s) # print True

i. What will be the output of the following program?
s = {'Mango', 'Banana', 'Guava', 'Kiwi'}

s.clear()
print(s)
del(s)
print(s)
Program
set()
NameError: name 's' is not defined

j. Which of the following is the correct way to create an empty set?
s1 = set()
s2 = { }
What are the types of s1 and s2? How will you confirm the type?
Answer
s1 = set() is the correct way to create an empty set.
s2 = { } is the correct way to create an empty dictionary.
Types of s1 and s2 can be confirmed as shown below:
s1 = set()
s2 = { }
print(type(s1))
print(type(s2))

Its output will be:
<class 'set'>
<class 'dict'>

[A] State whether the following statements are True or False:

a. Dictionary elements can be accessed using position-based index.
Answer
False

b. Dictionaries are immutable.
Answer
False

c. Insertion order is preserved by a dictionary.
Answer
False

d. The very first key - value pair in a dictionary d can be accessed using the
expression d[0].
Answer
False

e. courses.clear() will delete the dictionary object called courses.
Answer
False

f. It is possible to nest dictionaries.
Answer
True

g. It is possible to hold multiple values against a key in a dictionary.

Answer
True

[B] Attempt the following questions:

a. Write a program that reads a string from the keyboard and creates
dictionary containing frequency of each character occurring in the string.
Also print these occurrences in the form of a histogram.
Program
Count frequency of characters in string
s = input('Enter any string: ')
freq = { }
for ch in s :

if ch in freq :
freq[ch] += 1

else :
freq[ch] = 1

print ('Count of all characters is: ', freq)
for k, v in freq.items() :

print(k, ':', end = '')
for i in range(0, v) :

print('*', end ='')
print()

Output
Enter any string: Ashish Samant
Count of all characters is: {'A': 1, 's': 2, 'h': 2, 'i': 1, ' ': 1, 'S': 1, 'a': 2, 'm':
1, 'n': 1, 't': 1}
A :*
s :**
h :**
i :*
:*
S :*
a :**
m :*

n :*
t :*

b. Create a dictionary containing names of students and marks obtained by
them in three subjects. Write a program to replace the marks in three
subjects with the total in three subjects, and average marks. Also report
the topper of the class.
Program
Dictionary operations
import operator
students = {

'Dipti' : { 'Maths' : 48, 'eng' : 60, 'hindi' : 95},
'Smriti' : { 'Maths' : 75,'eng' : 68,'hindi' : 89},
'Subodh' : { 'Maths' : 45,'eng' : 66,'hindi' : 87}

}
tot = { }
topper_name = ''
topper_marks = 0
for nam, info in students.items() :

total = 0
for sub, marks in info.items() :

total = total + marks
avg = int(total / 3)
students[nam] = {'Total' : total, 'Average' : avg}
if avg > topper_marks :

topper_name = nam
topper_marks = avg

print(students)
print ('Topper of the class:', topper_name)
print('Topper marks:', topper_marks)
Output
{'Dipti': {'Total': 203, 'Average': 67}, 'Smriti': {'Total': 232, 'Average':
77}, 'Subodh': {'Total': 198, 'Average': 66}}
Topper of the class: Smriti
Topper marks: 77

c. Given the following dictionary:
portfolio = { 'accounts' : ['SBI', 'IOB'],

'shares' : ['HDFC', 'ICICI', 'TM', 'TCS'],
'ornaments' : ['10 gm gold', '1 kg silver']}

Write a program to perform the following operations:
- Add a key to portfolio called 'MF' with values 'Reliance' and 'ABSL'.
- Set the value of 'accounts' to a list containing 'Axis' and 'BOB'.
- Sort the items in the list stored under the 'shares' key.
- Delete the list stored under 'ornaments' key.
Program
Dictionary operations
portfolio = {

'accounts' : ['SBI', 'IOB'],
'shares' : ['HDFC', 'ICICI', 'TM', 'TCS'],
'ornaments' : ['10 gm gold', '1 kg silver']

}
portfolio['MF'] = ['Reliance','ABSL']
print(portfolio)
portfolio['accounts'] = ['Axis', 'BOB']
print(portfolio)
lst = portfolio['shares']
portfolio['shares'] = sorted(lst)
print(portfolio)
del(portfolio['ornaments'])
print(portfolio)
Output
{'accounts': ['SBI', 'IOB'], 'shares': ['HDFC', 'ICICI', 'TM', 'TCS'],
'ornaments': ['10 gm gold', '1 kg silver'], 'MF': ['Reliance', 'ABSL']}
{'accounts': ['Axis', 'BOB'], 'shares': ['HDFC', 'ICICI', 'TM', 'TCS'],
'ornaments': ['10 gm gold', '1 kg silver'], 'MF': ['Reliance', 'ABSL']}
{'accounts': ['Axis', 'BOB'], 'shares': ['HDFC', 'ICICI', 'TCS', 'TM'],
'ornaments': ['10 gm gold', '1 kg silver'], 'MF': ['Reliance', 'ABSL']}
{'accounts': ['Axis', 'BOB'], 'shares': ['HDFC', 'ICICI', 'TCS', 'TM'], 'MF':

['Reliance', 'ABSL']}
d. Create two dictionaries-one containing grocery items and their prices

and another containing grocery items and quantity purchased. By using
the values from these two dictionaries compute the total bill.
Program
Calculate total bill amount
prices = { 'Bottles' : 30, 'Tiffin' : 100, 'Bag' : 400, 'Bicycle' : 2000 }
stock = { 'Bottles' : 10, 'Tiffin' : 8, 'Bag' : 1, 'Bicycle' : 5}
total = 0
for key in prices :

value = prices[key] * stock[key]
total += value

print('Total Bill Amount =', total)
Output
Bottles 300
Tiffin 800
Bag 400
Bicycle 10000
Total Bill Amount = 11500

e. Which functions will you use to fetch all keys, all values and key value
pairs from a given dictionary?
Answer
To fetch all keys - keys()
To fetch all values - values()
To fetch key value pairs - items()

f. Create a dictionary of 10 usernames and passwords. Receive the
username and password from keyboard and search for them in the
dictionary. Print appropriate message on the screen based on whether a
match is found or not.
Program
Check authentic user
users = {

'Sanjay' : 'ceftum1250', 'Rahul' : 'Crocin100',

'Sanket' : 'Metrogyl50', 'Shyam' : 'Miopass10',
'Satish' : 'mvpxx_9000', 'Srishti' : 'Relaxo!',
'Smriti' : 'newyear200', 'Sakhi' : 'Bday1711',
'Raakhi' : 'jallosh200', 'Rahika' : 'Ultu1900'

}
userid = input('Enter username: ')
password = input('Enter password: ')
for k, v in users.items() :

if k == userid and v == password :
print('Valid username and password')
exit()

print('Invalid username and password')
Output
Enter username: Smriti
Enter password: newyear200
Valid username and password

g. Given the following dictionary
marks = { 'Subu' : { 'Maths' : 88, 'Eng' : 60, 'SSt' : 95 },

'Amol' : { 'Maths' : 78, 'Eng' : 68, 'SSt' : 89 },
''Raka' : { 'Maths' : 56, 'Eng' : 66, 'SSt' : 77 }}

Write a program to perform the following operations:
- Print marks obtained by Amol in English.
- Set marks obtained by Raka in Maths to 77.
- Sort the dictionary by name.
Program
marks = {

'Subu' : { 'Maths' : 88, 'Eng' : 60, 'SSt' : 95 },
'Amol' : { 'Maths' : 78, 'Eng' : 68, 'SSt' : 89 },
'Raka' : { 'Maths' : 56, 'Eng' : 66, 'SSt' : 77 }

}
print('Marks obtained by Amol in english:', marks['Amol']['Eng'])
marks['Raka']['Maths'] = '77'
print(marks)

marks = dict(sorted(marks.items()))
print(marks)
Output
Marks obtained by Amol in english: 68
{'Subu': {'Maths': 88, 'Eng': 60, 'SSt': 95}, 'Amol': {'Maths': 78, 'Eng':
68, 'SSt': 89}, 'Raka': {'Maths': 56, 'Eng': 66, 'SSt': 77}}
{'Amol': {'Maths': 78, 'Eng': 68, 'SSt': 89}, 'Raka': {'Maths': 56, 'Eng':
66, 'SSt': 77}, 'Subu': {'Maths': 88, 'Eng': 60, 'SSt': 95}}

h. Create a dictionary which stores the following data:

Interface IP Address status

eth0 1.1.1.1 up

eth1 2.2.2.2 up

wlan0 3.3.3.3 down

wlan1 4.4.4.4 up

Write a program to perform the following operations:
- Find the status of a given interface.
- Find interface and IP of all interfaces which are up.
- Find the total number of interfaces.
- Add two new entries to the dictionary.
Program
Working with nested directories
ifs = {

'eth0':{'IP' : '1.1.1.1', 'Status' : 'up'},
'eth1':{'IP' : '2.2.2.2', 'Status' : 'up'},
'wlan0':{'IP' : '3.3.3.3', 'Status' : 'down'},
'wlan1':{'IP' : '4.4.4.4', 'Status' : 'up'}

}
test = input('Enter interface: ')
print(ifs[test]['Status'])
for k, v in ifs.items() :

if v['Status'] == 'up' :
print(k, v['IP'])

print('Total interfaces = ', len(ifs))
ifs['eth2'] = {'IP' : '5.5.5.5', 'Status' :'down'}
ifs['wlan2'] = {'IP' : '6.6.6.6', 'Status' : 'up'}
for k, v in ifs.items() :

print(k, v)
Output
Enter interface: eth1
up
eth0 1.1.1.1
eth1 2.2.2.2
wlan1 4.4.4.4
Total interfaces = 4
eth0 {'IP': '1.1.1.1', 'Status': 'up'}
eth1 {'IP': '2.2.2.2', 'Status': 'up'}
wlan0 {'IP': '3.3.3.3', 'Status': 'down'}
wlan1 {'IP': '4.4.4.4', 'Status': 'up'}
eth2 {'IP': '5.5.5.5', 'Status': 'down'}
wlan2 {'IP': '6.6.6.6', 'Status': 'up'}

i. Suppose a dictionary contains 5 key-value pairs of name and marks.
Write a program to print them from last pair to first pair. Keep deleting
every pair printed, such that the end of printing the dictionary falls
empty.
Program
marks = { 'Subu' : 88, 'Amol' : 78, 'Raka' : 56, 'Dinesh' : 68, 'Ranjit' : 88}
l = len(marks)
for i in range(l) :

print(marks.popitem())
print(marks)

[C] Answer the following questions:

a. What will be the output of the following code snippet?
d = { 'Milk' : 1, 'Soap' : 2, 'Towel' : 3, 'Shampoo' : 4, 'Milk' : 7}

print(d[0], d[1], d[2])
Answer
Error: Dictionary elements cannot be accessed using a position- based
index.

b. Which of the following statements are CORRECT?
i. A dictionary will always contain unique keys.
ii. Each key in a dictionary may have multiple values.
iii. If same key is assigned a different value, latest value will prevail.
Answer
i. True
ii. True
iii. True

c. How will you create an empty list, empty tuple, empty set and empty
dictionary?
Answer
l = []
t = ()
s = set()
d = { }

d. How will you create a list, tuple, set and dictionary, each containing one
element?
Program
l = [10]
t = (10,)
s = {10}
d = {10: 'A'}

e. Given the following dictionary:
d = { 'd1': {'Fruitname' : 'Mango', 'Season' : 'Summer'}, 'd2': {'Fruitname'
: 'Orange', 'Season' : 'Winter'}} How will you access and print Mango
and Winter?
Program

d = { 'd1': {'Fruitname' : 'Mango', 'Season' : 'Summer'}, 'd2': {'Fruitname'
: 'Orange', 'Season' : 'Winter'}}
print(d['d1']['Fruitname'])
print(d['d2']['Season'])

f. In the following table check the box if a property is enjoyed by the data
types mentioned in columns?

g. What is the most common usage of the data types mentioned below?
str
list
tuple
set
dict
Answer
str - collection of characters
list - similar elements
tuple - pairs or triplets
set - unique elements
dict - key-value pairs

[A] State whether the following statements are True or False:

a. Tuple comprehension offers a fast and compact way to generate a tuple.
Answer
True

b. List comprehension and dictionary comprehension can be nested.
Answer
True

c. A list being used in a list comprehension cannot be modified when it is
being iterated.
Answer
True

d. Sets being immutable cannot be used in comprehension.
Answer
False

e. Comprehensions can be used to create a list, set or a dictionary.
Answer
True

[B] Answer the following questions:

a. Write a program that generates a list of integer coordinates for all points
in the first quadrant from (1, 1) to (5, 5). Use list comprehension.

Program
coord = [(x, y) for x in range(1, 6)for y in range(1, 6)]
print(coord)
Output
[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3,
1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5,
2), (5, 3), (5, 4), (5, 5)]

b. Using list comprehension, write a program to create a list by multiplying
each element in the list by 10.
Program
lst = [-7, 10, 34, 2, 5, 45, 67]
lst = [(x * 10) for x in lst]
print(lst))
Output
[-70, 100, 340, 20, 50, 450, 670]

c. Write a program to generate first 20 Fibonacci numbers using list
comprehension.
Program
lst = [0, 1]
[lst.append(lst[k - 1] + lst[k - 2]) for k in range(2, 20)]
print('First 20 Fibonacci numbers:', lst)
Output
First 20 Fibonacci numbers:
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181]

d. Write a program to generate two lists using list comprehension. One list
should contain first 20 odd numbers and another should contain first 20
even numbers.
Program
lst1 = [x for x in range(40) if x % 2 != 0]
print('First 20 Odd Numbers:')
print(lst1)

lst2 = [x for x in range(40) if x % 2 == 0]
print('First 20 Even Numbers:')
print(lst2)
Output
First 20 Odd Numbers:
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39]
First 20 Even Numbers:
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38]

e. Suppose a list contains positive and negative numbers. Write a program
to create two lists-one containing positive numbers and another
containing negative numbers.
Program
lst = [1, 2, 5, -11, -9, 10, 13, 15, -17, -19, -21, -23, 25, 27, -29]
pos = [num for num in lst if num > 0]
print(pos)
neg = [num for num in lst if num < 0]
print(neg)
Output
[1, 2, 5, 10, 13, 15, 25, 27]
[-11, -9, -17, -19, -21, -23, -29]

f. Suppose a list contains 5 strings. Write a program to convert all these
strings to uppercase.
Program
lst = ['abc', 'def', 'ghi', 'jkl', 'lmn']
lst = [s.upper() for s in lst] print(lst)
Output
['ABC', 'DEF', 'GHI', 'JKL', 'LMN']

g. Write a program that converts list of temperatures in Fahrenheit degrees
to equivalent Celsius degrees using list comprehension.
Program
farh = [101, 120, 100, 67, 32]
celsius = [(e - 32) * 5 / 9 for e in farh]

print(celsius)
Output
[38, 48, 37, 19, 0]

h. Write a program to generate a 2D matrix of size 4 x 5 containing random
multiples of 4 in the range 40 to 160.
Program
import random
rows, cols = (5, 4)
arr = [[(4 * random.randint(10, 40)) for i in range(cols)] for j in
range(rows)]
print(arr)
Output
[[72, 108, 92, 148], [88, 152, 76, 96], [148, 108, 104, 136], [132, 48,
160, 116], [140, 40, 104, 48]]

i. Write a program that converts words present in a list into uppercase and
stores them in a set.
Program
lst = ['function', 'office', 'type', 'product', 'most']
s = set([word.upper() for word in lst])
print(s)
Output
{'MOST', 'TYPE', 'FUNCTION', 'OFFICE', 'PRODUCT'}

[C] Attempt the following questions:

a. Consider the following code snippet:
s = set([int(n) for n in input('Enter values: ').split()])
print(s)
What will be the output of the above code snippet if input provided to it
is 1 2 3 4 5 6 7 2 4 5 0?
Output
{0, 1, 2, 3, 4, 5, 6, 7}

b. How will you convert the following code into a list comprehension? a =
[]
for n in range(10, 30) :

if n % 2 == 0 :
a.append(n)

Answer
a = [n for n in range(10, 30) if n % 2 == 0]

c. How will you convert the following code into a set comprehension?
a = set()
for n in range(21, 40) :

if n % 2 == 0 :
a.add(n)

print(a)
Answer
a = {n for n in range(21, 40) if n % 2 == 0}

d. What will be the output of the following code snippet?
s = [a + b for a in ['They ', 'We '] for b in ['are gone!', 'have come!']]
print(s)
Answer
['They are gone!', 'They have come!', 'We are gone!', 'We have come!']

e. From the sentence
sent = 'Pack my box with five dozen liquor jugs'
how will you generate a set given below?
{'liquor', 'jugs', 'with', 'five', 'dozen', 'Pack'}
Output
sent = 'Pack my box with five dozen liquor jugs'
sent = {w for w in sent.split() if len(w) > 3}

f. Which of the following the correct form of dictionary comprehension?
i. dict_var = {key : value for (key, value) in dictonary.items()}
ii. dict_var = {key : value for (key, value) in dictonary}
iii. dict_var = {key : value for (key, value) in dictonary.keys()}

Output
dict_var = {key : value for (key, value) in dictonary.items()}

g. Using comprehension how will you convert
{'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4, 'e' : 5}
into
{'A' : 100, 'B' : 200, 'C' : 300, 'D' : 400, 'E' : 500}?
Output
d = {'a' : 1, 'b' : 2, 'c' : 3, 'd' : 4, 'e' : 5}
d = {key.upper() : value * 100 for (key, value) in d.items()}
print(d)

h. What will be the output of the following code snippet?
lst = [2, 7, 8, 6, 5, 5, 4, 4, 8]
s = {True if n % 2 == 0 else False for n in lst}
print(s)
Output
{False, True}

i. How will you convert
d = {'AMOL' : 20, 'ANIL' : 12, 'SUNIL' : 13, 'RAMESH' : 10}
into
{'Amol': 400, 'Anil': 144, 'Sunil': 169, 'Ramesh': 100}
Output
d = {'AMOL' : 20, 'ANIL' : 12, 'SUNIL' : 13, 'RAMESH' : 10}
d = {key.capitalize() : value * value for (key, value) in d.items()}
print(d)

j. How will you convert the words present in a list given below into
uppercase and store them in a set?
lst = ['Amol', 'Vijay', 'Vinay', 'Rahul', 'Sandeep']
Output
lst = ['Amol', 'Vijay', 'Vinay', 'Rahul', 'Sandeep']
d = {word.upper() for word in lst}

print(d)

[A] Answer the following questions:

a. Write a program that defines a function count_lower_upper() that
accepts a string and calculates the number of uppercase and lowercase
alphabets in it. It should return these values as a dictionary. Call this
function for some sample strings.
Program
def count_lower_upper(s) :

dlu = {'Lower' : 0, 'Upper' : 0}
for ch in s :

if ch.islower() :
dlu['Lower'] += 1

elif ch.isupper() :
dlu['Upper'] += 1

return(dlu)
d = count_lower_upper('James BOnd ')
print(d)
d = count_lower_upper('Anant Amrut Mahalle')
print(d)
Output
{'Lower': 6, 'Upper': 3}
{'Lower': 14, 'Upper': 3}

b. Write a program that defines a function compute() that calculates the
value of n + nn + nnn + nnnn, where n is digit received by the function.
Test the function for digits 4 and 7.

Program
import math
def compute(n) :

s = 0
num = 0
for outer in range(0, 4) :

num = num * 10 + n
s = s + num

return(s)
total = compute(7)
print('The value of n + nn + nnn + nnnn is', total)
total = compute(4)
print('The value of n + nn + nnn + nnnn is', total)
Output
The value of n + nn + nnn + nnnn is 8638
The value of n + nn + nnn + nnnn is 4936

c. Write a program that defines a function create_array() to create and
return a 3D array whose dimensions are passed to the function. Also
initialize each element of this array to a value passed to the function.
Program
def create_array(i, j, k, num):
l = [[[num for col in range(k)] for row in range(j)] for twods in range(i)]
return(l)
lst = create_array(4, 3, 2, 10)
print(lst)
Output
[[[10, 10], [10, 10], [10, 10]], [[10, 10], [10, 10], [10, 10]], [[10, 10], [10,
10], [10, 10]], [[10, 10], [10, 10], [10, 10]]]

d. Write a program that defines a function create_list() to create and return
a list which is an intersection of two lists passed to it.
Program
def create_list(l1, l2) :

l3 = list(set(l1) & set(l2))

return(l3)
lst1 = [10, 20, 30, 40, 50]
lst2 = [1, 2, 3, 40, 10]
lst3 = create_list(lst1, lst2)
print(lst3)
Output
[40, 10]

e. Write a program that defines a function sanitize_list() to remove all
duplicate entries from the list that it receives.
Program
def sanitize_list(l) :
l = list(set(l))
return(l)
lst = [10, 3, 30, 10, 4, 3, -5, 10, 0, -5]
lst = sanitize_list(lst)
print('List after removing duplicates: ', lst)
Output
List after removing duplicates: [0, 3, 4, 10, -5, 30]

f. Which of the calls to print_it() in the following program will report
errors?
def print_it(i, a, s, *args) :

print()
print(i, a, s, end = ' ')
for var in args :

print(var, end = ' ')
print_it(10, 3.14)
print_it(20, s = 'Hi', a = 6.28)
print_it(a = 6.28, s = 'Hello', i = 30)
print_it(40, 2.35, 'Nag', 'Mum', 10)
Answer
The first call
print_it(10, 3.14)

will report an error 'missing 1 required positional argument: 's''
The other 3 calls are correct.

g. Which of the calls to fun() in the following program will report errors?
def fun(a, *args, s = '!') :

print(a, s)
for i in args :

print(i, s)
fun(10)
fun(10, 20)
fun(10, 20, 30)
fun(10, 20, 30, 40, s = '+')
Answer
No error. All calls are correct.

[B] Attempt the following questions:

a. What is being passed to function fun() in the following code?
int a = 20
lst = [10, 20, 30, 40, 50]
fun(a, lst)
Answer
Address of int and address of list.

b. Which of the following are valid return statements?
return (a, b, c)
return a + b + c
return a, b, c
Answer
All are valid return statements.

c. What will be the output of the following program?
def fun() :

print('First avatar')
fun()
def fun() :

print('New avatar')
fun()
Answer
First avatar
New avatar

d. How will you define a function containing three return statements, each
returning a different type of value?
Answer
def fun(a) :

if a < 0 :
return 10

if a == 0 :
return 10.0

if a > 0 :
return '10'

print(fun(-5))
print(fun(5))
print(fun(0))

e. Can function definitions be nested? If yes, why would you want to do
so?
Answer
Function definitions can be nested. At times we are need a function that
is needed by only one function. This function can then be nested within
the function that needs to call it.

f. How will you call print_it() to print elements of tpl?
def print_it(a, b, c, d, e) :

print(a, b, c, d, e)
tpl = ('A', 'B', 'C', 'D', 'E')
Answer
print_it(*tpl)

[A] State whether the following statements are True or False:

a. If a recursive function uses three variables a, b and c, then the same set
of variables are used during each recursive call.
Answer
True

b. If a recursive function uses three variables a, b and c, then the same set
of variables are used during each recursive call.
Answer
False

c. Multiple copies of the recursive function are created in memory.
Answer
False

d. A recursive function must contain at least 1 return statement.
Answer
True

e. Every iteration done using a while or for loop can be replaced with
recursion.
Answer
True

f. Logics expressible in the form of themselves are good candidates for
writing recursive functions.

Answer
True

g. Tail recursion is similar to a loop.
Answer
True

h. Infinite recursion can occur if the base case is not properly defined.
Answer
True

i. A recursive function is easy to write, understand and maintain as
compared to a one that uses a loop.
Answer
False

[B] Answer the following questions :

a. Following program calculates sum of first 5 natural numbers using tail
recursion. Rewrite the function to obtain the sum using head recursion.
def headsum(n) :

if n != 0 :
s = n + headsum(n - 1)

else :
return 0

return s
print('Sum of First 5 Natural numbers = ', headsum(5))
Program
def headsum(n) :

if n != 0 :
s = n + headsum(n - 1)

else :
return 0 return s

print('Sum of First 5 Natural numbers = ', headsum(5))
Output

Sum of First 5 Natural numbers = 15
b. There are three pegs labeled A, B and C. Four disks are placed on peg A.

The bottom-most disk is largest, and disks go on decreasing in size with
the topmost disk being smallest. The objective of the game is to move
the disks from peg A to peg C, using peg B as an auxiliary peg. The
rules of the game are as follows:
- Only one disk may be moved at a time, and it must be the top disk on

one of the pegs.
- A larger disk should never be placed on the top of a smaller disk.
Write a program to print out the sequence in which the disks should be
moved such that all disks on peg A are finally transferred to peg C.
Program
def move(n, sp, ap, ep) :

if n == 1 :
print('Move from', sp, 'to', ep)

else :
move(n-1, sp, ep, ap)
move(1, sp, '', ep)
move(n-1, ap, sp, ep) move(4, 'A', 'B', 'C')

Output
Move from A to B
Move from A to C
Move from B to C
Move from A to B
Move from C to A
Move from C to B
Move from A to B
Move from A to C
Move from B to C
Move from B to A
Move from C to A
Move from B to C
Move from A to B
Move from A to C

Move from B to C
c. A string is entered through the keyboard. Write a recursive function that

counts the number of vowels in this string.
Program
def fun(s, idx, count) :

if idx == len(s):
return count

if s[idx] == 'a' or s[idx] == 'e' or s[idx] == 'i' or s[idx] == 'o' or s[idx]
== 'u' :

count += 1
count = fun(s, idx + 1, count)
return count

count = fun('Raindrops on roses', 0, 0)
print(count)
Output
6

d. A string is entered through the keyboard. Write a recursive function
removes any tabs present in this string.
Program
def replace(source, i, n) :

global target
if i == n :

return
if source[i] == '\t' :

pass
else :

target += source[i]
i += 1
replace(source, i, n)

s = 'Raindrops on Roses and whiskers on kittens'
print(s)
target = ''
replace(s, 0, len(s) - 1)

print(target)
Output
Raindrops on Roses and whiskers on kittens RaindropsonRoses and
whiskersonkitten

e. A string is entered through the keyboard. Write a recursive function that
checks whether the string is a palindrome or not.
Program
def ispalindrome(st, start, end) :

if start > end :
return True

if st[start] != st[end] :
return False

status = ispalindrome(st, start + 1, end - 1)
return status

st1 = 'malayalam'
st2 = 'malhindilam'
status = ispalindrome(st1, 0, len(st1) - 1)
print(status)
status = ispalindrome(st2, 0, len(st2) - 1)
print(status)
Output
True
False

f. Two numbers are received through the keyboard into variables a and b.
Write a recursive function that calculate the value of ab.
Program
def power(x, y) :

if y == 0 :
return 1

if y == 1 :
return x

prod = x * power(x, y - 1)

return prod
c = power(2, 5)
print(c)
d = power(3, 4)
print(d)
Output
32
81

g. Write a recursive function that reverses the list of numbers that it
receives.
Program
def reverselist(lst, start, end) :

if start > end :
return

lst[start], lst[end] = lst[end], lst[start]
reverselist(lst, start + 1, end - 1)

numlst = [10, 20, 30, 40, 50]
reverselist(numlst, 0, 4)
print(numlst)
Output
[50, 40, 30, 20, 10]

h. A list contains some negative and some positive numbers. Write a
recursive function that sanitizes the list by replacing all negative
numbers with 0.
Program
def replace(lst, i, n) :

if i > n :
return

if lst[i] < 0 :
lst[i] = 0

i += 1
replace(lst, i, n)

numlst = [10, 20, -3, -4, 50, -4, 60, 70, -4]
replace(numlst, 0, len(numlst) - 1)
print(numlst)
Output
[10, 20, 0, 0, 50, 0, 60, 70, 0]

i. Write a recursive function to obtain a verage of all numbers present in a
given list.
Program
def get_average(lst, n) :

if n == 1 :
return lst[0]

else :
return (get_average(lst, n - 1) * (n - 1) + lst[n - 1]) / n

print(sum, n)
return sum

numlst = [10, 20, 30, 40, 50, 60]
avg = get_average(numlst, len(numlst))
print(avg)
Output
35.0

j. Write a recursive function to obtain length of a given string.
Program
def get_length(st) :

if st == '' :
return 0

else :
return 1 + get_length(st[1:])

s = 'www.ykanetkar.com'
l = get_length(s)
print(l)
Output
17

k. Write a recursive function that receives a number as input and returns the
square of the number. Use the mathematical identity (n - 1) 2 = n2 - 2n +
1.
Program
def square(n) :

if n < 0 :
n = n * -1

if n == 1 :
return 1

sq = square(n - 1) + 2 * n - 1
return sq

s = square(4)
print(s)
s = square(-4)
print(s)
Output
16
16

[C] What will be the output of the following programs?

a. def fun(x, y) :
if x == 0 :

return y
else :

return fun(x - 1, x * y)
print(fun(4, 2))
Output
48

b. def fun(num) :
if num > 100 :

return num - 10
return fun(fun(num + 11))

print(fun(75))

Output
91

c. def fun(num) :
if num == 0 :

print("False")
if num == 1 :

print("True")
if num % 2 == 0 :

fun(num / 2)
fun(256)
Output
True

[A] State whether the following statements are True or False:

a. lambda function cannot be used with reduce() function.
Answer
False

b. lambda, map(), filter(), reduce() can be combined in one single
expression.
Answer
True

c. Though functions can be assigned to variables, they cannot be called
using these variables.
Program
False

d. Functions can be passed as arguments to function and returned from
function.
Program
True

e. Functions can be built at execution time, the way lists, tuples, etc. can
be.
Program
True

f. Lambda functions are always nameless.

Program
True

[B] Using lambda, map(), filter() and reduce() or a combination
thereof to perform the following tasks:

a. Suppose a dictionary contains type of pet (cat, dog, etc.), name of pet
and age of pet. Write a program that obtains the sum of all dog's ages.
Program
def fun1(d) :

if d['Type'] == 'Dog' :
return d['Age']

else :
return 0

def fun2(n) :
if n == 0 :

return False
else :

return True
dct = {

'A101' : {'Type' : 'Cat', 'Name' : 'Tauby', 'Age' : 6 },
'A102' : {'Type' : 'Dog', 'Name' : 'Tommy', 'Age' : 8 },
'A103' : {'Type' : 'Dog', 'Name' : 'Tiger', 'Age' : 10 }

}
lst2 = list(filter(fun2, list(map(fun1, list(dct.values())))))
print('The Sum of all Dogs ages:', sum(lst2)/len(lst2))
Output
The Sum of all Dogs ages: 9.0

b. Consider the following list:
lst = [1.25, 3.22, 4.68, 10.95, 32.55, 12.54]
The numbers in the list represent radii of circles. Write a program to
obtain a list of areas of these circles rounded off to two decimal places.
Program

lst = [1.25, 3.22, 4.68, 10.98, 32.55, 12.54]
area_lst = list(map(lambda n : round(n * n * 3.14, 2), lst))
print(area_lst)
Output
[4.91, 32.56, 68.77, 378.56, 3326.84, 493.77]

c. Consider the following lists:
nums = [10, 20, 30, 40, 50, 60, 70, 80]
strs = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
Write a program to obtain a list of tuples, where each tuple contains a
number from one list and a string from another, in the same order in
which they appear in the original lists.
Program
nums = [10, 20, 30, 40, 50, 60, 70, 80]
strs = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
ltpl = list(map(lambda x, y : (x, y), nums, strs))
print(ltpl)
Output
[(10, 'A'), (20, 'B'), (30, 'C'), (40, 'D'), (50, 'E'), (60, 'F'), (70, 'G'), (80,
'H')]

d. Suppose a dictionary contains names of students and marks obtained by
them in an examination. Write a program to obtain a list of students who
obtained more than 40 marks in the examination.
Program
students = {

'Dipti' : 55, 'Smriti' :12, 'Subodh' : 45,
'Meenal' : 33, 'Harsha' : 40, 'Bhushan' : 42

}
lst = filter(lambda x : x[1] >= 40, students.items())
print(list(lst))
Output
[('Dipti', 55), ('Subodh', 45), ('Harsha', 40), ('Bhushan', 42)]

e. Consider the following list:

lst = ['Malayalam', 'Drawing', 'madamIamadam', '1234321']
Write a program to print out those strings which are palindromes.
Program
lst = ['Malayalam', 'Drawing', 'madamIamadam', '1234321']
lst1 = list(filter(lambda x : (x == ''.join(reversed(x))), lst))
print(lst1)
Output
['1234321']

f. A list contains names of employees. Write a program to filter out those
names whose length is more than 8 characters.
Program
lst = ['Parmeshwar', 'Kashmira', 'Seema', 'Roopa', 'Mahalaxmi']
lst1 = filter(lambda x : len(x) >= 8, lst)
print(list(lst1))
Output
['Parmeshwar', 'Kashmira', 'Mahalaxmi']

g. A dictionary contains following information about 5 employees:
First name
Last name
Age
Grade (Skilled, Semi-skilled, Highly-skilled)
Write a program to obtain a list of employees (first name + last name)
who are Highly-skilled.
Program
d = {

'Dinesh' : {'last_name' : 'Sahare', 'age' : 30, 'Grade' : 'Skilled'},
'Ram' : {'last_name' : 'Jog', 'age' : 35, 'Grade' : 'Semi-Skilled'},
'S.' : {'last_name' : 'Sam', 'age' : 25, 'Grade' : 'Highly-Skilled'},
'Adi' : {'last_name' : 'Lim', 'age' : 25, 'Grade' : 'Highly-Skilled'},
'Ann' : {'last_name' : 'Mir', 'age' : 25, 'Grade' : 'Highly-Skilled'}

}
lst = filter(lambda x : x[1]['Grade'] == 'Highly-Skilled', d.items())

print(list(lst))
Output
[('S.', {'last_name': 'Sam', 'age': 25, 'Grade': 'Highly-Skilled'}), ('Adi',
{'last_name': 'Lim', 'age': 25, 'Grade': 'Highly-Skilled'}), ('Ann',
{'last_name': 'Mir', 'age': 25, 'Grade': 'Highly-Skilled'})]

h. Consider the following list:
lst = ['Benevolent', 'Dictator', 'For', 'Life']
Write a program to obtain a string 'Benevolent Dictator For Life'.
Program
lst = ['Benevolent', 'Dictator', 'For', 'Life']
s = ' '.join(map(str, lst))
print(s)
Output
Benevolent Dictator For Life

i. Consider the following list of students in a class.
lst = ['Rahul', 'Priya', 'Chaya', 'Narendra', 'Prashant']
Write a program to obtain a list in which all the names are converted to
uppercase.
Program
lst = ['Rahul', 'Priya', 'Chaaya', 'Narendra', 'Prashant']
lst1 = map(lambda x : x.upper(), lst)
print(list(lst1))
Output
['RAHUL', 'PRIYA', 'CHAYA', 'NARENDRA', 'PRASHANT']

[A] Answer the following questions:

a. Suppose there are three modules m1.py,m2.py, m3.py, containing
functionsf1(), f2() and f3() respectively. How will you use those
functions in your program?
Program
Directory structure will be as follows:
module

init.py
m1.py
m2.py
m3.py

client.py
The functions can be used as shown below:
client.py
import module.m1
import module.m2
import module.m3
module.m1.f1()
module.m2.f2()
module.m3.f3()

b. Write a program containing functions fun1(), fun2(), fun3() and some
statements. Add suitable code to the program such that you can use it as
a module or a normal program.

Program
def fun1() :

print('Inside function fun1')
def fun2() :

print('Inside function fun2')
def fun3() :

print('Inside function fun3')
def main() :
fun1()
fun2()
fun3()
if (name == ' main ') :

main()
c. Suppose a module mod.py contains functionsf1(), f2() and f3(). Write

4 forms of import statements to use these functions in your program.
Program
Directory structure will be as follows:
module

init.py
mod.py

client.py
client.py - Method 1
import module.mod
module.mod.f1()
module.mod.f2()
module.mod.f3()
client.py - Method 2
from module.mod import f1
from module.mod import f2
from module.mod import f3
f1()
f2()
f3()

client.py - Method 3
from module.mod import *
f1()
f2()
f3()
client.py - Method 4
import module.mod as M
M.f1()
M.f2()
M.f3()

[B] Attempt the following questions:

a. What is the difference between a module and a package?
Answer
A module is a .py file containing function definitions and statements. So
all .py files are modules.
A directory is treated as a package if it contains a file named _init_.py
file in it.

b. What is the purpose behind creating multiple packages and modules?
Answer
Multiple packages and modules are created to manage the complexity of
code and to organize the code in reusable pieces.

c. By default, to which module do the statements in a program belong?
How do we access the name of this module?
Answer
By default, the statements in a program belong to main module. We
access the name of this module through the variable _name_.

d. In the following statement what do a, b, c, x represent?
import a.b.c.x
Answer
a, b, c, x are nested modules.

e. If module m contains a function fun(), what is wrong with the following
statements?
import m
fun()
Answer
To call fun(), we must use the syntax
m.fun()

f. What are the contents of PYTHONPATH variable? How can we access
its contents programmatically?
Answer
PYTHONPATH environment variable contains a list of directories. They
can be accessed through the following code snippet:
import sys
for p in sys.path :

print(p)
g. What does the content of sys.path signify? What does the order of

contents of sys.path signify?
Answer
The sys.path variable contains a list of directories. The first directory in
the list is the directory from where the current script has been executed.
This is followed by a list of directories as specified in PYTHONPATH
environment variable.
The modules being used in the program will be searched in the same
order as the order of directories in the list.

h. Where a list of third-party packages is maintained?
Answer
PyPI maintains a list of third-party package.

i. Which tool is commonly used for installing third-party packages?
Answer
pip is a commonly used tool for installing third-party packages.

j. Do the following import statements serve the same purpose?

version 1
import a, b, c, d
version 2
import a
import b
import c
import d
version 3
from a import *
from b import *
from c import *
from d import *
Answer
Yes

[C] State whether the following statements are True or False:

a. A function can belong to a module and the module can belong to a
package.
Answer
True

b. A package can contain one or more modules in it.
Answer
True

c. Nested packages are allowed.
Answer
True

d. Contents of sys.path variable cannot be modified.
Answer
False

e. In the statement import a.b.c, c cannot be a function.
Answer

True
f. It is a good idea to use * to import all the functions/classes defined in a

module.
Answer
True

[A] State whether the following statements are True or False:

a. Symbol table consists of information about each identifier used in our
program.
Answer
True

b. An identifier with global scope can be used anywhere in the program.
Answer
True

c. It is possible to define a function within another function.
Answer
True

d. If a function is nested inside another function, then variables defined in
outer function are available to inner function.
Answer
True

e. If nested functions create two variables with same name, then the two
variables are treated as same variable.
Answer
False

f. An inner function can be called from outside the outer function.
Answer

False
g. If a function creates a variable by the same name as the one that exists in

global scope, the function's variable will shadow out the global variable.
Answer
True

h. Variables defined at global scope are available to all the functions
defined in the program.
Answer
True

[B] Answer the following questions:

a. What is the difference between the function locals() and globals()?
Answer
locals() - When called from a function/method, it returns a dictionary of
identifiers that are accessible from that function/method.
globals() - When called from a function/method, it returns a dictionary
of global identifiers that can be accessible from that function/method.

b. Would the output of the following print statements be same or different?
a = 20
b = 40
print(globals())
print(locals())
Answer
Output will be same.

c. Which different scopes can an identifier have?
Answer
Local(L), Enclosing(E), Global(G), Built-in(B).

d. Which is the most liberal scope that an identifier can have?
Answer
Global scope is the most liberal scope that an identifier can have.

[A] State whether the following statements are True or False:

a. Class attributes and object attributes are same.
Answer
False

b. A class data member is useful when all objects of the same class must
share a common item of information.
Answer
True

c. If a class has a data member and three objects are created from this class,
then each object would have its own data member.
Answer
True

d. A class can have class data as well as class methods.
Answer
True

e. Usually data in a class is kept private and the data is accessed /
manipulated through object methods of the class.
Answer
True

f. Member functions of an object have to be called explicitly, whereas, the
init() method gets called automatically.

Answer
True

g. A constructor gets called whenever an object gets instantiated.
Answer
True

h. The _init_() method never returns a value.
Answer
True

i. When an object goes out of scope, its _del_() method gets called
automatically.
Answer
True

j. The self variable always contains the address of the object using which
the method/data is being accessed.
Answer
True

k. The self variable can be used even outside the class.
Answer
False

l. The _init_() method gets called only once during the lifetime of an
object.
Answer
True

m. By default, instance data and methods in a class are public.
Answer
True

n. In a class 2 constructors can coexist-a 0-argument constructor and a 2-
argument constructor.
Answer

True

[B] Answer the following questions:

a. Which methods in a class act as constructor?
Answer
init() in a class acts as a constructor.

b. How many objects are created in the following code snippet?
a = 10
b = a
c = b
Answer
One object is created in the above code snippet.

c. What is the difference between variables, age and _age?
Answer
age is a public attribute but _age is a private attribute of an object.

d. What is the difference between the function vars() and dir()?
Answer
vars() - Returns a dictionary of attributes and their values.
dir() - Returns a list of attributes.

e. In the following code snippet what is the difference between display()
and show()?
class Message :

def display(self, msg) :
pass

def show(msg) :
pass

Answer
display() is an object method as it receives the address of the object
(inself) using which it is called. show() is class method and it can be
called independent of an object.

f. In the following code snippet what is the difference between display()
and show()?
m = Message()
m.display('Hi and Bye')
Message.show('Hi and Bye')
Answer
display() is an object method as it is being called using the object m .
show() is class method and it is being called using the class Message.

g. How many parameters are being passed to display() in the following
code snippet:
m = Sample()
m.display(10, 20, 30)
Answer
Four. Apart from 10, 20, 30, address of the object contained in m also
gets passed to display().

[C] Attempt the following questions:

a. Write a program to create a class that represents Complex numbers
containing real and imaginary parts and then use it to perform complex
number addition, subtraction, multiplication and division.
Program
import math
class Complex() :

def init (self, x, y) :
self.real = x
self.imag = y

def display(self) :
if self.imag < 0 :

print(self.real, self.imag, 'i')
else :

print(self.real, '+', self.imag, 'i')
def add(self, x) :

r = self.real + x.real
i = self.imag + x.imag
return Complex(r, i)

def subtract(self, x) :
r = self.real - x.real
i = self.imag - x.imag
return Complex(r, i)

def multiply(self, x) :
r = self.real * x.real - self.imag * x.imag
i = self.real * x.imag + self.imag * x.real
return Complex(r, i)

def conj(self) :
r = self.real
i = -self.imag
return Complex(r, i)

def mods(self) :
mod2 = self.real * self.real + self.imag * self.imag
return math.sqrt(mod2)

def divide(self, x) :
m = x.mods()
c = x.conj()
if m == 0 :

print('Unable to divide the complex numbers')
else :

quo = self.multiply(c)
quo.real = quo.real / m
quo.imag = quo.imag / m
return quo

a = Complex(2, 3)
b = Complex(6, -1)
print('a: ', end = '')
a.display()
print('b: ', end = '')
b.display()

c = a.add(b)
print('a + b = ', end = '')
c.display()
d = a.subtract(b)
print('a - b = ', end = '')
d.display()
e = a.multiply(b)
print('a * b = ', end = '')
e.display()
f = a.divide (b)
print('a / b = ', end = '')
f.display()
Output
a: 2 + 3 i
b: 6 -1 i
a + b = 8 + 2 i
a - b = -4 + 4 i
a * b = 15 + 16 i
a / b = 1.4795908857482156 + 3.287979746107146 i

b. Write a program that implements a Matrix class and performs addition,
multiplication, and transpose operations on 3 x 3 matrices.
Program
class Matrix :

size = 3
def _init_(self, r, c) :

self.rows = r
self.cols = c
self.arr = []

def initializeMatrix(self) :
print('Enter the contents of the matrix row-wise: ')

for i in range(self.rows) :
print('Row ', i, ':')
a = []
for j in range(self.cols) :

a.append(int(input()))
print('Row ', i, 'completed.')
self.arr.append(a)

print('Matrix initialized successfully.')
def displayMatrix(self) :

for i in range(self.rows) :
for j in range(self.cols) :

print('{0:<5}'.format(self.arr[i][j]), end = '')
print()

def add(self, m) :
mat = Matrix(self.rows, self.cols)
for i in range(self.rows) :

lst = []
for j in range(self.cols) :

lst.append(self.arr[i][j] + m.arr[i][j])
mat.arr.append(lst)

return mat
def multiply(self, m) :

mat = Matrix(self.rows, m.cols)
for i in range(self.rows) :

lst = []
for j in range(self.cols) :

temp = 0
for k in range(self.cols) :

temp = temp + self.arr[i][k] * m.arr[k][j]
lst.append(temp)

mat.arr.append(lst)
return mat

def transpose(self) :
mat = Matrix(self.cols, self.rows)
for i in range(self.cols) :

lst = []
for j in range(self.rows) :

lst.append(self.arr[j][i])
mat.arr.append(lst)

return mat
print('Initialize Matrix 1:')
mat1 = Matrix(3, 3)
mat1.initializeMatrix()
print('Initialize Matrix 2:')
mat2 = Matrix(3, 3)
mat2.initializeMatrix()
print('First Matrix: ')
mat1.displayMatrix()
print('Second Matrix: ')
mat2.displayMatrix()
mat3 = mat1.add(mat2)
print('After addition: ')
mat3.displayMatrix()
mat4 = mat1.multiply(mat2)
print('After multiplication: ')
mat4.displayMatrix()
mat5 = mat1.transpose()
print('Transpose of Matrix 1: ')
mat5.displayMatrix()
Output
Initialize Matrix 1:
Enter the contents of the matrix row-wise:
Row 0 :
1
2
3
Row 0 completed.
Row 1 :
1
2
3
Row 1 completed.

Row 2 :
1
2
3
Row 2 completed.
Matrix initialized successfully.
Initialize Matrix 2:
Enter the contents of the matrix row-wise:
Row 0 :
1
1
1
Row 0 completed.
Row 1 :
1
1
1
Row 1 completed.
Row 2 :
1
1
1
Row 2 completed.
Matrix initialized successfully.
First Matrix:
1 2 3
1 2 3
1 2 3
Second Matrix:
1 1 1
1 1 1
1 1 1
After addition:
2 3 4
2 3 4
2 3 4

After multiplication:
6 6 6
6 6 6
6 6 6
Transpose of Matrix 1:
1 1 1
2 2 2
3 3 3

c. Write a program to create a class that can calculate the surface area and
volume of a solid. The class should also have a provision to accept the
data relevant to the solid.
Program
class Solid :

def init (self, len_cbd = 0, br_cbd = 0, ht_cbd = 0, side_cube = 0,
ht_cyl = 0, rad_cyl = 0, rad_sphere = 0) :

self.len_cbd = len_cbd
self.br_cbd = br_cbd
self.ht_cbd = ht_cbd
self.side_cube = side_cube
self.ht_cyl = ht_cyl
self.rad_cyl = rad_cyl
self.rad_sphere = rad_sphere

def sarea_cuboid(self) :
sa = 2 * (self.len_cbd * self.br_cbd + self.len_cbd * self.ht_cbd +
self.ht_cbd * self.br_cbd)
print('Surface area of cuboid is:', sa)

def vol_cuboid(self) :
v = self.len_cbd * self.br_cbd * self.ht_cbd
print('Volume of cuboid is:', v)

def sarea_cube(self) :
sa = 6 * (self.side_cube * self.side_cube)
print('Surface area of cube is:', sa)

def vol_cube(self) :
v = self.side_cube * self.side_cube * self.side_cube

print('Volume of cube is:', v)
def sarea_cyl(self) :

sa = 2 * (3.14 * self.rad_cyl * self.ht_cyl + 3.14 * self.rad_cyl *
self.rad_cyl)
print('Surface area of cylinder is:', sa)

def vol_cyl(self) :
v = 3.14 * self.rad_cyl * self.rad_cyl * self.ht_cyl
print('Volume of cylinder is:', v)

def sarea_sphere(self) :
sa = 4 * (3.14 * self.rad_sphere * self.rad_sphere)

print('Surface area of sphere is:', sa)
def vol_sphere(self) :

v = 4 / 3 * 3.14 * self.rad_sphere * self.rad_sphere * self.rad_sphere
print('Volume of sphere is:', v)

choice = 1
while choice != 0 :

print('1. Cuboid')
print('2. Cube')
print('3. Cylinder')
print('4. Sphere')
print('0. Exit')
choice = int(input('Enter choice: '))
if choice == 1 :

l = int(input('Length of cuboid: '))
b = int(input('Breadth of cuboid: '))
h = int(input('Height of cuboid: '))
s = Solid(len_cbd = l, br_cbd = b, ht_cbd = h)
s.sarea_cuboid()
s.vol_cuboid()

elif choice == 2 :
sd = int(input('Side of cube: '))
s = Solid(side_cube = sd)
s.sarea_cube()
s.vol_cube()

elif choice == 3 :
h = int(input('Height of cylinder: '))
r = int(input('Radius of base: '))
s = Solid(rad_cyl = r, ht_cyl = h)
s.sarea_cyl()
s.vol_cyl()

elif choice == 4 :
r = int(input('Radius of sphere: '))
s = Solid(rad_sphere = r)
s.sarea_sphere()
s.vol_sphere()

elif choice == 0 :
print('Exiting!')

else :
print('Invalid choice!!')

Output
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 1
Length of cuboid: 5
Breadth of cuboid: 4
Height of cuboid: 3
Surface area of cuboid is : 94
Volume of cuboid is : 60
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 2
Side of cube: 5

Surface area of cube is : 150
Volume of cube is : 125
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 3
Height of cylinder: 6
Radius of base: 3
Surface area of cylinder is : 169.56
Volume of cylinder is : 169.56
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 4
Radius of sphere: 6
Surface area of sphere is : 452.15999999999997
Volume of sphere is : 904.3199999999998
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 8
Invalid choice!!
1. Cuboid
2. Cube
3. Cylinder
4. Sphere
0. Exit
Enter choice: 0 Exiting!

d. Write a program to create a class that can calculate the perimeter /
circumference and area of a regular shape. The class should also have a
provision to accept the data relevant to the shape.
Program
class Shape :

def init (self, len_rect = 0, br_rect = 0, side_square = 0, rad_cir = 0) :
self.len_rect = len_rect
self.br_rect = br_rect
self.side_square = side_square
self.rad_cir = rad_cir

def area_rect(self) :
a = self.len_rect * self.br_rect
print('Area of rectangle is:', a)

def peri_rect(self) :
p = 2 * (self.len_rect + self.br_rect)
print('Perimeter of rectangle is:', p)

def area_square(self) :
a = self.side_square * self.side_square
print('Area of square is:', a)

def peri_square(self) :
p = 4 * self.side_square
print('Perimeter of square is:', p)

def area_cir(self) :
a = 3.14 * self.rad_cir * self.rad_cir
print('Area of cicle is:', a)

def peri_cir(self) :
p = 2 * 3.14 * self.rad_cir
print('Perimeter of circle is:', p)

choice = 1
while choice != 0 :

print('1. Rectangle')
print('2. Square')
print('3. Circle')

print('0. Exit')
choice = int(input('Enter choice: '))
if choice == 1 :

l = int(input('Length of rectangle: '))
b = int(input('Breadth of rectangle: '))
s = Shape(len_rect = l, br_rect = b)
s.area_rect()
s.peri_rect()

elif choice == 2 :
sd = int(input('Side of square: '))
s = Shape(side_square = sd)
s.area_square()
s.peri_square()

elif choice == 3 :
r = int(input('Radius of circle: '))
s = Shape(rad_cir = r)
s.area_cir()
s.peri_cir()

elif choice == 0 :
print('Exiting!')
else :
print('Invalid choice!!')

Output
1. Rectangle
2. Square
3. Circle
0. Exit
Enter choice: 1
Length of rectangle: 6
Breadth of rectangle: 5
Area of rectangle is: 30
Perimeter of rectangle is: 22
1. Rectangle
2. Square

3. Circle
0. Exit
Enter choice: 2
Side of square: 4
Area of square is: 16
Perimeter of square is: 16
1. Rectangle
2. Square
3. Circle
0. Exit
Enter choice: 3
Radius of circle: 5
Area of cicle is: 78.5
Perimeter of circle is: 31.400000000000002
1. Rectangle
2. Square
3. Circle
0. Exit
Enter choice: 5
Invalid choice!!
1. Rectangle
2. Square
3. Circle
0. Exit
Enter choice: 0
Exiting!

e. Write a program that creates and uses a Time class to perform various
time arithmetic operations.
Program
class Time :

def init (self, hr = 0, mnt = 0, sec = 0) :
self.hours = hr
self.minutes = mnt
self.seconds = sec

def add_seconds(self, sec) :

if sec > 86400 :
return 1

h = int(sec / 3600)
m = int((sec - h * 3600) / 60)
s = int((sec - h * 3600 - m * 60))

self.hours = self.hours + h
self.minutes = self.minutes + m
self.seconds = self.seconds + s
if self.seconds >= 60 :

self.minutes += 1
self.seconds -= 60

if self.minutes >= 60 :
self.hours += 1
self.minute -= 60

if self.hours >= 24 :
self.hours = self.hours % 24

def sub_seconds(self, sec) :
if sec > 86400 :

return 1

h = int(sec / 3600)
m = int((sec - h * 3600) / 60)
s = int((sec - h * 3600 - m * 60))

self.hours = self.hours - h
self.minutes = self.minutes - m
self.seconds = self.seconds - s
if self.seconds < 0 :

self.minutes -= 1
self.seconds = 60 + self.seconds

if self.minutes < 0 :
self.hours -= 1
self.minutes = 60 + self.minutes

if self.hours < 0 :
self.hours = 24 + self.hours

def display(self) :
print(self.hours, ':', self.minutes, ':', self.seconds)

t1 = Time(10, 15, 35)
print('Original time = ', end ='')
t1.display()
val = t1.add_seconds(144)
if val == 1 :

print('Cannot add more than 24 hours')
else :

print('Time after adding 144 seconds = ', end ='')
t1.display()

print('Original time = ', end ='')
t1.display()
val = t1.add_seconds(4000)
if val == 1 :

print('Cannot add more than 24 hours')
else :

print('Time after adding 4000 seconds = ', end ='')
t1.display()

print('Original time = ', end ='')
t1.display()
val = t1.sub_seconds(4000)
if val == 1 :

print('Cannot deduct more than 24 hours')
else :

print('Time after deducting 4000 seconds = ', end ='')
t1.display()

print('Original time = ', end ='')
t1.display()
val = t1.sub_seconds(144)
if val == 1 :

print('Cannot deduct more than 24 hours')
else :

print('Time after deducting 144 seconds = ', end ='')
t1.display()

Output
Original time = 10 : 15 : 35
Time after adding 144 seconds = 10 : 17 : 59
Original time = 10 : 17 : 59
Time after adding 4000 seconds = 11 : 24 : 39
Original time = 11 : 24 : 39
Time after deducting 4000 seconds = 10 : 17 : 59
Original time = 10 : 17 : 59
Time after deducting 144 seconds = 10 : 15 : 35

f. Write a program to implement a linked list data structure by creating a
linked list class. Each node in the linked list should contain name of the
car, its price and a link to the next node.
Program
class Node:

def init (self, car, price):
self.car = car
self.price = price
self.next = None

class LinkedList:
def init (self):

self.head = None
def add(self, c, pr):

n = Node(c, pr)
if self.head is None :

self.head = n
else :

p = self.head
while p.next is not None :

p = p.next

p.next = n
def display(self):

p = self.head
while p is not None:

print(p.car, p.price)
p = p.next

llst = LinkedList()
llst.add('BMW', '55 lac')
llst.add('Honda City', '12 lac')
llst.add('Mercedes', '75 lac')
llst.add('Esteem', '10 lac')
llst.add('i20', '6 lac')
llst.add('i10', '4 lac')
llst.display()
Output
BMW 55 lac
Honda City 12 lac
Mercedes 75 lac
Esteem 10 lac
i20 6 lac
i10 4 lac

[D] Match the following:

a. dir() 1. Nested packages

b. vars() 2. Identifiers, their type & scope

c. Variables in a function 3. Returns dictionary

d. import a.b.c 4. Local namespace

e. Symbol table 5. Returns list

f. Variables outside all functions 6. Global namespace

Answer
dir() - Returns list
vars() - Returns dictionary
Variables in a function - Local namespace
import a.b.c - Nested packages
Symbol table - Identifiers, their type & scope

Variables outside all functions - Global namespace

[A] State whether the following statements are True or False:

a. A global function can call a class method as well as an instance method.
Answer
True

b. In Python a function, class, method and module are treated as objects.
Answer
True

c. Given an object, it is possible to determine its type and address.
Answer
True

d. It is possible to delete attributes of an object during execution of the
program.
Answer
True

e. Arithmetic operators, Comparison operators and Compound assignment
operators can be overloaded in Python.
Answer
True

f. The + operator has been overloaded in the classes str, list and int.
Answer
False

[B] Answer the following questions:

a. Which functions should be defined to overload the +, -, / and //
operators?
Answer
+ add (self, other)
- sub (self, other)
/ truediv (self, other)
// floordiv (self, other)

b. How many objects are created by lst = [10, 10, 10, 30]?
Answer
Two objects are created, one which refers to 10 and another which refers
to 30. This can be verified as follows:
lst = [10, 10, 10, 30]
print(id(lst[0]), id(lst[1]), id(lst[2]), id(lst[3]))
Its output will be:
1481758656 1481758656 1481758656 1481758976

c. How will you define a structure Employee containing the attributes
Name, Age, Salary, Address, Hobbies dynamically?
Answer
class Employee:

pass
e = Employee()
e.name = 'Rohan'
e.age = 29
e.salary = 340000
e.address = 'xyz'
e.hobbies = 'painting'

d. To overload the + operator, which method should be defined in the
corresponding class?
Answer
add(self, other)

e. To overload the % operator, which method should be defined in the
corresponding class?
Answer
mod(self, other)

f. To overload the //= operator, which method should be defined in the
corresponding class?
Answer
ifloordiv(self, other)

g. If a class contains instance methods _ge_() and _ne_(), what do they
signify?
Answer
They represent overloaded >= and != methods.

h. What conclusion can be drawn if the following statements work?
a = (10, 20) + (30, 40)
b = 'Good' + 'Morning'
c = [10, 20, 30] + [40, 50, 60]
Answer
+ operator has been overload in tuple, str and list class.

i. What will be the output of the following code snippet?
a = (10, 20) - (30, 40)
b = 'Good' - 'Morning'
c = [10, 20, 30] - [40, 50, 60]
Answer
Error: - operator has not been overloaded in tuple, str or list class.

j. Will the following statement work? What is your conclusion if it works?
print ('Hello' * 7)
Answer
Yes, it will. It will output Hello 7 times. We can conclude that * operator
has been overloaded in str class.

k. Which out of +, - and * have been overloaded in str class?

Answer
+ and * have been overloaded in str class.

l. When would the method truediv () defined in the Sample class shown
below would get called?
class Sample :

def_truediv_(self, other) :
pass

Answer
When / operator is used on Sample objects.

m. If != operator has been overloaded in a class then the expression c1 <=
c2 would get converted into which function call?
Answer
A call to function _le_().

n. How will you define the overloaded * operator for the following code
snippet?
c1 = Complex(1.1, 0.2)
c2 = Complex(1.1, 0.2)
c3 = c1 * c2
Answer
class Complex :

def init (self, x, y) :
self.real = x
self.imag = y

def display(self) :
if self.imag < 0 :
print(self.real, self.imag, 'i')

else :
print(self.real, '+', self.imag, 'i')

def mul (self, other) :
r = self.real * other.real - self.imag * other.imag
i = self.real * other.imag + self.imag * other.real
return Complex(r, i)

a = Complex(2, 3)
b = Complex(6, -1)
c = a * b
c.display()

o. Implement a String class containing the following functions:
- Overloaded += operator function to perform string concatenation.
- Method toLower() to convert upper case letters to lower case.
- Method toUpper() to convert lower case letters to upper case.
Answer
class String :

def init (self, x) :
self.s = x

def display(self) :
print(self.s)

def iadd (self, other) :
self.s = self.s + other.s
return self

def toUpper(self) :
self.s = self.s.upper()

def toLower(self) :
self.s = self.s.lower()

a = String('www.ykanetkar')
b = String('.com')
a += b
a.display()
a.toUpper()
a.display()
a.toLower()
a.display()

[C] Match the following:

a. Can't use as identifier name 1. class name

b. basic_salary 2. class variable

c. CellPhone 3. keyword

d. count 4. local variable in a function

e. self 5. private variable

f. _fuel_used 6. strongly private identifier

g. draw() 7. method that Python calls

h. iter () 8. meaningful only in instance func.

Answer
Can't use as identifier name - keyword
basic_salary - class variable
CellPhone - class name
count - local variable in a function
self - meaningful only in instance function
_fuel_used - private variable
_draw() - strongly private identifier
_iter () - method that Python calls

[A] State whether the following statements are True or False:

a. Inheritance is the ability of a class to inherit properties and behavior
from a parent class by extending it.
Answer
True

b. Containership is the ability of a class to contain objects of different
classes as member data.
Answer
True

c. We can derive a class from a base class even if the base class's source
code is not available.
Answer
True

d. Multiple inheritance is different from multiple levels of inheritance.
Answer
True

e. An object of a derived class cannot access members of base class if the
member names begin with.
Answer
True

f. Creating a derived class from a base class requires fundamental changes
to the base class.
Answer
False

g. If a base class contains a member function func(), and a derived class
does not contain a function with this name, an object of the derived class
cannot access func().
Answer
False

h. If no constructors are specified for a derived class, objects of the derived
class will use the constructors in the base class.
Answer
False

i. If a base class and a derived class each include a member function with
the same name, the member function of the derived class will be called
by an object of the derived class.
Answer
True

j. A class D can be derived from a class C, which is derived from a class
B, which is derived from a class A.
Answer
True

k. It is illegal to make objects of one class members of another class.
Answer
False

[B] Answer the following:

a. Which module should be imported to create abstract class?
Answer
abc

b. For a class to be abstract from which class should we inherit it?
Answer
ABC

c. Suppose there is a base class B and a derived class D derived from B. B
has two public member functionsb1() and b2(), whereasD has two
member functions d1() and d2(). Write these classes for the following
different situations:
- b1() should be accessible from main module, b2() should not be.
- Neither b1(), nor b2() should be accessible from main module.
- Both b1() and b2() should be accessible from main module.
Program
Version 1: b1() accessible, b2() inaccessible
class B :

def b1(self) :
print('B - b1')

def b2(self) :
print('B - b2')

class D(B) :
def d1(self) :

print('D - d1')
def d2(self) :

print('D - d2')
b = B()
b.b1() # works
b. b2() # error
Version 2: b1() inaccessible, b2() inaccessible
class B :

def b1(self) :
print('B - b1')

def b2(self) :
print('B - b2')

class D(B) :
def d1(self) :

print('D - d1')
def d2(self) :

print('D - d2')
b = B()
b. b1() # error
b. b2() # error
Version 3: b1() accessible, b2() accessible
class B :

def b1(self) :
print('B - b1')

def b2(self) :
print('B - b2')

class D(B) :
def d1(self) :

print('D - d1')
def d2(self) :

print('D - d2')
b = B()
b.b1() # works
b.b2() # works

d. If a class D is derived from two base classes B1 and B2, then write these
classes each containing a constructor. Ensure that while building an
object of type D, constructor of B2 should get called. Also provide a
destructor in each class. In what order would these destructors get
called?
Program
class B1 :

def init (self) :
print('B1 Ctor')

def del (self) :
print('B1 Dtor')

class B2 :
def init (self) :

print('B2 Ctor')
def _del_(self) :

print('B2 Dtor')
class D(B1, B2) :

def _init_(self) :
B2. init (self)
print('D Ctor')

def _del_(self) :
B1._del_(self)
B2._del_(self)
print('D Dtor')

d = D()
d = None
Output
B2 Ctor
D Ctor
B1 Dtor
B2 Dtor
D Dtor
The destructors of base classes get called before destructor of derived
class.

e. Create an abstract class called Vehicle containing methods speed(),
maintenance() andvalue() in it. Derive classesFourWheeler,
TwoWheeler and Airborne from Vehicle class. Check whether you are
able to prevent creation of objects of Vehicle class. Call the methods
using objects of other classes.
Program
from abc import ABC, abstractmethod
class Vehicle(ABC) :

@abstractmethod
def speed(self) :

pass
def maintenance(self) :

pass
def value(self) :

pass
class FourWheeler(Vehicle) :

def speed(self) :
print('In FourWheeler.speed')

def maintenance(self) :
print('In FourWheeler.maintenance')

def value(self) :
print('In FourWheeler.value')

class TwoWheeler(Vehicle) :
def speed(self) :

print('In TwoWheeler.speed')
def maintenance(self) :

print('In TwoWheeler.maintenance')
def value(self) :

print('In TwoWheeler.value')
v = Vehicle() # will result in error, as Vehicle is abstract class
fw = FourWheeler()
fw.speed()
fw.maintenance()
fw.value()
tw = TwoWheeler()
tw.speed()
tw.maintenance()
tw.value()
Output
In FourWheeler.speed
In FourWheeler.maintenance
In FourWheeler.value
In TwoWheeler.speed
In TwoWheeler.maintenance

In TwoWheeler.value
f. Assume a class D that is derived from classB. Which of the following

can an object of class D access?
- members of D
- members of B
Answer
Both

[C] Match the following:

a. mro () 1. ‘has a’ relationship

b. Inheritance 2. Object creation not allowed

c. var 3. Super class

d. Abstract class 4. Root class

e. Parent class 5. ‘is a’ relationship

f. object 6. Name mangling

g. Child class 7. Decides resolution order

h. Containership 8. Sub class

Answer
mro() - Decides resolution order
Inheritance - ‘is a’ relationship
_var - Name mangling
Abstract class - Object creation not allowed
Parent class - Super class
object - Root class
Child class - Sub class
Containership - ‘has a’ relationship

[D] Attempt the following questions:

a. From which class is any abstract class derived?
Answer
ABC

b. At a time, a class can be derived from how many abstract classes?
Answer
Any number

c. How do we create an abstract class in Python?
Answer
By deriving it from ABC class of abc module as shown below:
from abc import ABC
class Sample(ABC) :

pass
d. What can an abstract class contain-instance method, class method,

abstract method?
Answer
All three.

e. How many objects can be created from an abstract class?
Answer
Zero

f. What will happen on execution of this code snippet?
from abc import ABC, abstractmethod
class Sample(ABC) :
@abstractmethod
def display(self) :

pass
s = Sample()
Answer
Error: Cannot create an object from an abstract class.

g. Suppose there is a class called Vehicle. What should be done to ensure
that an object should not be created from Vehicle class?

Answer
Make it an abstract class by deriving it from class ABC of abc module.

h. How will you mark an instance method in an abstract class as abstract?
Answer
My marking it with the decorator @abstractmethod.

i. There is something wrong in the following code snippet. How will you
rectify it?
class Shape(ABC) :
@abstractmethod
def draw(self) :

pass
class Circle(Shape) :
@abstractmethod
def draw(self) :

print('In draw')
Answer
Both draw() methods and their decorators must be indented.

[A] Answer the following questions:

a. Write a program to create a list of 5 odd integers. Replace the third
element with a list of 4 even integers. Flatten, sort and print the list.
Program
lst = [1, 3, 9, 13, 17]
lst[2] = [2, 8, 12, 16]
lst1 = []
for num in lst[2] :

lst1.append(num)
lst = lst[0:2] + lst1 + lst[3:]
print(lst)
Output
[1, 3, 2, 8, 12, 16, 13, 17]

b. Write a program to flatten the following list:
mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
Program
lst = []
mat1 = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]
lst = []
for m in mat1 :

for ele in m :
lst.append(ele)

print(lst)

Output
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

c. Write a program to generate a list of numbers in the range 2 to 50 that
are divisible by 2 and 4.
Program
lst = [n for n in range(2, 50) if n % 2 == 0 and n % 4 == 0]
print(lst)
Output
[4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48]

d. Suppose there are two lists, each holding 5 strings. Write a program to
generate a list that consists of strings that are concatenated by picking
corresponding elements from the two lists.
Program
lst1 = ['Cat', 'Dog', 'Lion', 'Tiger']
lst2 = ['Lily', 'Rose', 'Hibiscus', 'Lavender']
loft = zip(lst1, lst2)
lst3 = []
for tpl in loft :

lst3.append(tpl[0] + tpl[1])
print(lst3)
Output
['CatLily', 'DogRose', 'LionHibiscus', 'TigerLavender']

e. Suppose a list contains 20 integers generated randomly. Receive a
number from the keyboard and report position of all occurrences of this
number in the list.
Program
import random
lst =[int(10 * random.random()) for n in range(20)]
print(lst)
num = int(input('Enter number between 1 to 10: '))
indexlist = [i for i in range(len(lst)) if lst[i] == num]
print(num, 'is present at following positions')

print(indexlist)
Output
[2, 8, 1, 6, 0, 6, 4, 4, 4, 8, 6, 9, 1, 2, 5, 0, 1, 4, 8, 8]
Enter number between 1 to 10: 4
4 is present at following positions
[6, 7, 8, 17]

f. Suppose there are two lists-one contains questions and another contains
lists of 4 possible answers for each question. Write a program to generate
a list that contains lists of question and its 4 possible answers.
Program
qlist = ['What is capital of India', 'Which is your favorite color?']
alist = [['Delhi', 'Mumbai', 'Hyderabad', 'Bangalore'], ['Red', 'Blue',
'White', 'Black']]
qalist = []
for q, a in zip(qlist, alist) :

lst = [q, *a]
qalist.append(lst)

print(qalist)
Output
[['What is capital of India', 'Delhi', 'Mumbai', 'Hyderabad', 'Bangalore'],
['Which is your favorite color?', 'Red', 'Blue', 'White', 'Black']]

g. Suppose a list has 20 numbers. Write a program that removes all
duplicates from this list.
Program
lst =[1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 4, 1, 3, 2, 1, 1, 2, 2, 5, 5]
lst = list(set(lst))
print(lst)
Output
[1, 2, 3, 4, 5]

h. Write a program to obtain a median value of a list of numbers, without
disturbing the order of the numbers in the list.
Program

lst1 = [1, 2, 3, 4, 5, 6]
n = len(lst1)
s = sorted(lst1)
m = (sum(s[n // 2 - 1 : n // 2 + 1]) / 2.0, s[n // 2])[n % 2]
print(m)
lst2 = [7, 6, 5, 4, 3, 2, 1]
n = len(lst2)
s = sorted(lst2)
m = (sum(s[n // 2 - 1 : n // 2 + 1]) / 2.0, s[n // 2])[n % 2]
print(m)
Output
3.5
4

i. A list contains only positive and negative integers. Write a program to
obtain the number of negative numbers present in the list.
Program
lst1 = [-1, -2, -3, 1, 2, 3]
lst2 = [n for n in lst1 if n < 0]
c = len(lst2)
print(c)
Output
3

j. Write a program to convert a list of tuples
[(10, 20, 30), (150.55, 145.60, 157.65), ('A1', 'B1', 'C1')]
into a list
[(10, 150.55, 'A1'), (20, 145.60, 'B1'), (30, 157.65, 'C1')]
Program
lst = [(10, 20, 30), (150.55, 145.60, 157.65), ('A1', 'B1', 'C1')]
lst1 = []
for a, b, c in zip(*lst) :

lst1.append((a, b, c))
print(lst1)

Output
[(10, 150.55, 'A1'), (20, 145.6, 'B1'), (30, 157.65, 'C1')]

k. What will be the output of the following program?
x = [[1, 2, 3, 4], [4, 5, 6, 7]]
y = [[1, 1], [2, 2], [3, 3], [4, 4]]
l1 = [xrow for xrow in x] print(l1)
l2 = [(xrow, ycol) for ycol in zip(*y) for xrow in x]
print(l2)
Output
[[1, 2, 3, 4], [4, 5, 6, 7]]
[([1, 2, 3, 4], (1, 2, 3, 4)), ([4, 5, 6, 7], (1, 2, 3, 4)), ([1, 2, 3, 4], (1, 2, 3,
4)), ([4, 5, 6, 7], (1, 2, 3, 4))]

l. Write a program that uses a generator to create a set of unique words
from a line input through the keyboard.
Program
line = input('Enter a sentence: ')
s = set(line.split())
print(s)
Output
Enter a sentence: I did not do this. He did it or she did it
{'it', 'or', 'do', 'He', 'she', 'did', 'this.', 'I', 'not'}

m. Write a program that uses a generator to find out maximum marks
obtained by a student and his name from tuples of multiple students.
Program
def getname(stud, mm) :

if stud[1] == mm :
return stud[0]

lst = [('Ajay', 45), ('Sujay', 55), ('Nirmal', 40), ('Vijay', 75)]
maxmarks = max(student[1] for student in lst)
for student in lst :

name = getname(student, maxmarks)
print(name, maxmarks)

Output
Vijay 75

n. Write a program that uses a generator that generates characters from a
string in reverse order.
Program
n = 'Sacchidanand'
revn = [ch for ch in n[::-1]]
print(revn)
Output
['d', 'n', 'a', 'n', 'a', 'd', 'i', 'h', 'c', 'c', 'a', 'S']

o. What is the difference between the following statements?
sum([x**2 for x in range(20)])
sum(x**2 for x in range(20))
Answer
The first expression first generates a list and then obtains the sum of all
elements in the list.
The second expression keeps a running sum of square of each number
generates as and when they get generated.
Both will yield same result, but the second one is more efficient as it
occupies less space.

p. Suppose there are two lists, each holding 5 strings. Write a program to
generate a list that consists of strings that are concatenated by picking
corresponding elements from the two lists.
Program
lst1 = ['Cat', 'Dog', 'Lion', 'Tiger']
lst2 = ['Lily', 'Rose', 'Hibiscus', 'Lavender']
lst3 = [(x + y) for x, y in zip(lst1, lst2)] print(lst3)
Output
['CatLily', 'DogRose', 'LionHibiscus', 'TigerLavender']

q. 36 unique combinations can result from use of two dice. Create a
dictionary which stores these combinations as tuples.

Program
lst = [(d1, d2) for d1 in range(1,7) for d2 in range(1,7)]
print(lst)
Output
[(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2,
5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4,
4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (6, 1), (6, 2), (6,
3), (6, 4), (6, 5), (6, 6)]

[A] State whether the following statements are True or False:

a. The exception handling mechanism is supposed to handle compile time
errors.
Answer
False

b. It is necessary to declare the exception class within the class in which an
exception is going to be thrown.
Answer
False

c. Every raised exception must be caught.
Answer
True

d. For one try block there can be multiple except blocks.
Answer
True

e. When an exception is raised, an exception class's constructor gets called.
Answer
True

f. try blocks cannot be nested.
Answer
False

g. Proper destruction of an object is guaranteed by exception handling
mechanism.
Answer
False

h. All exceptions occur at runtime.
Answer
True

i. Exceptions offer an object-oriented way of handling runtime errors.
Answer
True

j. If an exception occurs, then the program terminates abruptly without
getting any chance to recover from the exception.
Answer
False

k. No matter whether an exception occurs or not, the statements in the
finally clause (if present) will get executed.
Answer
True

l. A program can contain multiple finally clauses.
Answer
False

m. finally clause is used to perform cleanup operations like closing the
network/database connections.
Answer
True

n. While raising a user-defined exception, multiple values can be set in the
exception object.
Answer
True

o. In one function/method, there can be only one try block.

Answer
False

p. An exception must be caught in the same function/method in which it is
raised.
Answer
False

q. All values set up in the exception object are available in the except block
that catches the exception.
Answer
True

r. If our program does not catch an exception then Python runtime catches
it.
Answer
True

s. It is possible to create user-defined exceptions.
Answer
True

t. All types of exceptions can be caught using the Exception class.
Answer
True

u. For every try block there must be a corresponding finally block.
Answer
False

[B] Answer the following:

a. If we do not catch the exception thrown at runtime then who catches it?
Answer
If we do not catch the exception thrown at runtime then Python runtime
catches it.

b. Explain in short most compelling reasons for using exception handling
over conventional error handling approaches.
Answer
Given below are the reasons for preferring exception handling over
conventional error handling:
- It allows separation of program's logic from error handling logic

making it more reliable and maintainable.
- Propagation of exception information from the place where an

exception occurred to the place where it is tackled is done by runtime
environment and is not the programmer's responsibility.

- It allows guaranteed cleanup in event of runtime errors.
c. Is it necessary that all classes that can be used to represent exceptions be

derived from base class Exception?
Answer
Yes

d. What is the use of a finally block in Python exception handling
mechanism?
Answer
Cleanup activities like releasing external resources, network connections
or database connections etc. is done in the finally block since it gets
called irrespective of whether an exception occurred or not.

e. How does nested exception handling work in Python?
Answer
If an exception is raised in the nested try block, the nested except block
is used to handle it. If it does not then the outer except blocks are used to
handle the exception.

f. Write a program that receives 10 integers and stores them and their
cubes in a dictionary. If the number entered is less than 3, raise a user-
defined exception NumberTooSmall, and if the number entered is more
than 30, then raise a user-defined exception NumberTooBig. Whether
an exception occurs or not, at the end print the contents of the dictionary.
Program

class NumberTooSmall(Exception) :
def init (self, num) :

self.num = num
def get_details(self) :

return {'Number too small' : self.num}
class NumberTooBig(Exception) :

def init (self, num) :
self.num = num

def get_details(self) :
return {'Number too big' : self.num}

class Numbers :
def init (self) :

self.dct = { }
def append(self, num, cube) :

self.dct[num] = cube
def display(self) :

for k, v in self.dct.items() :
print(k, v)

print()
n = Numbers()
print('Enter 10 numbers between 3 to 30 :')
try :

for x in range(10) :
num = int(input())

if num > 30 :
raise NumberTooBig(num)

elif num < 3 :
raise NumberTooSmall(num)

else :
cube = num * num *num
n.append(num, cube)

except NumberTooBig as ntb :
print(ntb.get_details())

except NumberTooSmall as nts :

print(nts.get_details())
finally :

n.display()
Output
Enter 10 numbers between 3 to 30 :
5
6
8
9
12
10
2
{'Number too small': 2}
5 125
6 216
8 512
9 729
12 1728
10 1000

g. What's wrong with the following code snippet?
try :

some statements
except :

report error 1
except ZeroDivisionError :

report error 2
Answer
Empty except block must be the last except block.

h. Which of these keywords is not part of Python's exception handling-try,
catch, throw,except, raise, finally, else?
Answer
catch and throw are not part of Python's exception handling.

i. What will be the output of the following code?

def fun() :
try :

return 10
finally :

return 20
k = fun()
print(k)
Output
20

[A] State whether the following statements are True or False:

a. If a file is opened for reading, it is necessary that the file must exist.
Answer
True

b. If a file opened for writing already exists, its contents would be
overwritten.
Answer
True

c. For opening a file in append mode it is necessary that the file should
exist.
Answer
False

[B] Answer the following questions:

a. What sequence of activities take place on opening a file for reading in
text mode?
Answer
On opening a file for reading in text mode following activities are
performed:
1. The disk is searched for existence of the file.
2. The file is brought into memory.
3. A pointer is set up which points to the first character in the file.

4. All the above.
b. Is it necessary that a file created in text mode must always be opened in

text mode for subsequent operations?
Answer
Yes

c. While using the statement,
fp = open('myfile', 'r')
what happens if,
- 'myfile' does not exist on the disk
- 'myfile' exists on the disk
Answer
The disk is searched for existence of the 'myfile'. If it doesn't exist then
FileNotFoundError exception is raised. If it exists it is brought into
memory and a pointer is set up which points to the first character in the
file.

d. While using the statement,
f = open('myfile', 'wb')
what happens if,
- 'myfile' does not exist on the disk
- 'myfile' exists on the disk
Answer
The disk is searched for existence of the 'myfile'. If it doesn't exist then
FileNotFoundError exception is raised. If it exists it is brought into
memory and a pointer is set up which points to the first byte in the file.

e. A floating-point list contains percentage marks obtained by students in
an examination. To store these marks in a file ‘marks.dat’, in which
mode would you open the file and why?
Program
'marks.dat' should be opened in 'wb' mode. This is because in binary
mode when we store a number in a disk file, it occupies as many bytes as
it occupied in memory. If file is opened in 'w' mode then the number is

stored character by character and hence would occupy as many bytes as
the length of the number.

[C] Attempt the following questions:

a. Write a program to read a file and display its contents along with line
numbers before each line.
Program
Display file contents
f = open('sample.txt', 'r')
while True :

data = f.readline()
if data == '' :

break
print(data)

f.close()
Output
CPython - is the reference implementation, written in C.
PyPy - Written in a subset of Python language called RPython.
Jython - Written in Java.
IronPython - Written in C#.

b. Write a program to append the contents of one file at the end of another.
Program
Append files
f1 = open('sample.txt', 'r')
para1 = ''
while True :

data = f1.readline()
if data == '' :

break
para1 += data

f2 = open('trial.txt', 'r+')
para2 = ''
while True :

data = f2.readline()
if data == '' :

break
para2 += data

para2 += para1
print(para2)
f2.seek(0, 0)
f2.write(para2)
f1.close()
f2.close()
Output
'sample.txt' contains a few lines in lower case. 'trial.txt. contains the
same lines in uppercase. After concatenation the contents of 'tiral.txt' is
as shown below:
CPYTHON - IS THE REFERENCE IMPLEMENTATION, WRITTEN
IN C. PYPY - WRITTEN IN A SUBSET OF PYTHON LANGUAGE
CALLED RPYTHON.
JYTHON - WRITTEN IN JAVA.
IRONPYTHON - WRITTEN IN C#.
CPython - is the reference implementation, written in C.
PyPy - Written in a subset of Python language called RPython.
Jython - Written in Java.
IronPython - Written in C#.

c. Suppose a file contains student's records with each record containing
name and age of a student. Write a program to read these records and
display them in sorted order by name.
Program
Sort records in a file
import operator
f = open('students.txt', 'r')
dct = { }
while True :

data = f.readline()
if data == '' :

break
stud = data.split()
dct[stud[0]] = stud[1]

f.close()
lst = sorted(dct.items(), key = operator.itemgetter(0))
for item in lst :

print(item[0], item[1])
Output
Anil 23
Prabhu 22
Rakesh 25
Sameer 30
Sanjay 25
Suresh 33

d. Write a program to copy contents of one file to another. While doing so
replace all lowercase characters with their equivalent uppercase
characters.
Program
Convert file contents to uppercase
f1 = open('stud1.txt', 'r')
f2 = open('stud2.txt', 'w')
while True :

data = f1.readline()
if data == '' :

break
data = data.upper()
f2.write(data)

f1.close()
f2.close()
Output
SANJAY 25
SAMEER 30
ANIL 23

SURESH 33
PRABHU 22
RAKESH 25

e. Write a program that merges lines alternately from two files and writes
the results to new file. If one file has a smaller number of lines than the
other, the remaining lines from the larger file should be simply copied
into the target file.
Program
Merge two files alternating its lines
f1 = open('sample.txt', 'r')
f2 = open('trial.txt', 'r')
f3 = open('combined.txt', 'w')
while True :

data1 = f1.readline()
if data1 == '' :

break
f3.write(data1)
data2 = f2.readline()
if data2 == '' :

break
f3.write(data2)

if data1 != '' :
while True :

data1 = f1.readline()
if data1 == '' :

break
f3.write(data1)

if data2 != '' :
while True :

data2 = f2.readline()
if data2 == '' :

break
f3.write(data2)

f1.close()

f2.close()
f3.close()
Output
File 'sample.txt' contains following lines:
1. SANJAY 25
2. SAMEER 30
3. ANIL 23
4. SURESH 33
5. PRABHU 22
6. DINESH 40
7. Suresh 34
File 'trial.txt' contains following lines:
1. Sandhya 25
2. Seema 30
3. Swati 23
4. Supriya 33
5. Sunidhi 22
Resulting file 'comined.txt' contains following lines:
1. SANJAY 25
1. Sandhya 25
2. SAMEER 30
2. Seema 30
3. ANIL 23
3. Swati 23
4. SURESH 33
4. Supriya 33
5. PRABHU 22
5. Sunidhi 22
6. DINESH 40
7. Suresh 34

f. Suppose an Employee object contains following details:
employee code
employee name

date of joining
salary
Write a program to serialize and deserialize this data.
Program
Serialization, Deserialization of employee record
import json
def encode_employee(x):

if isinstance(x, Employee) :
return(x.ecode, x.ename, x.doj, x.sal)

else :
raise TypeError('Complex object is not JSON serializable')

def decode_employee(dct):
if ' Employee ' in dct :

return Employee(dct['ecode'], dct['ename'], dct['doj'], dct['sal'])
return dct

class Employee :
def init (self, ecode, ename, doj, sal) :

self.ecode = ecode
self.ename = ename
self.doj = doj
self.sal = sal

def print_data(self) :
print(self.ecode, self.ename, self.doj, self.sal)

e = Employee('A101', 'Sameer', '17/11/2017', 25000)
f = open('data', 'w+')
json.dump(e, f, default = encode_employee)
f.seek(0)
ine = json.load(f, object_hook = decode_employee)
print(ine)
Output
['A101', 'Sameer', '17/11/2017', 25000]

g. A hospital keeps a file of blood donors in which each record has the
format:

Name: 20 Columns
Address: 40 Columns
Age: 2 Columns
Blood Type: 1 Column (Type 1, 2, 3 or 4)
Write a program to read the file and print a list of all blood donors whose
age is below 25 and whose blood type is 2.
Program
Formatted reading/writing
donors = {

'Sanjay' : ['Gokulpeth', 25, 1],
'Sunil' : ['Shankarnagar', 26, 2],
'Akash' : ['Sitaburdi', 27, 3],
'Rahul' : ['Ramnagar', 23, 2],
'Riddhi' : ['Dharampeth', 22, 2],
'Mangal' : ['Ramdaspeth', 21, 2]

}
f = open('donors.txt', 'w+')
for k, v in donors.items() :

s = '{0:20s}{1:40s}{2:2s}{3:1s}\n'.format(k, v[0], str(v[1]), str(v[2]))
f.write(s)

f.seek(0,0)
while True :

data = f.readline()
if data == '' :

break
nam = data[:20]
address = data[20:59]
age = int(data[60:62:])
bloodtype = int(data[62:])
if age < 25 and bloodtype == 2 :

print(nam, address, age, bloodtype)
f.close()
Output

Rahul Ramnagar 23 2

Riddhi Dharampeth 22 2

Mangal Ramdaspeth 21 2

h. Given a list of names of students in a class, write a program to store the
names in a file on disk. Make a provision to display thenth name in the
list, where n is read from the keyboard.
Program
Modify records in a file
names = ['Sanjay', 'Sunil', 'Akash', 'Rahul', 'Riddhi', 'Mangal']
f = open('students.txt', 'w+')
for studname in names :

f.write(studname + '\n')
num = int(input('Enter student number: '))
f.seek(0,0)
i = 1
while i < num :

data = f.readline()
i += 1

data = f.readline()
print('Num =', num, 'Name =', data)
f.close()
Output
Enter student number: 4
Num = 4 Name = Rahul

i. Assume that a Master file contains two fields, roll number and name of
the student. At the end of the year, a set of students join the class and
another set leaves. A Transaction file contains the roll numbers and an
appropriate code to add or delete a student.
Write a program to create another file that contains the updated list of
names and roll numbers. Assume that the Master file and the Transaction
file are arranged in ascending order by roll numbers. The updated file
should also be in ascending order by roll numbers.
Program

Processing master - transacton files
fm = open('master.txt', 'r')
mdata = fm.readlines()
ft = open('tran.txt', 'r')
while True :

trec = ft.readline()
if trec == '' :

break
tfields = trec.split()
if len(tfields) == 2 :

count = 0
for record in mdata :

mfields = record.split()
if tfields[0] == mfields[0] :

break
count += 1

del(mdata[count])
if len(tfields) == 3 :

mdata.append(tfields[0] + ' ' + tfields[1] + '\n')
sdata = sorted(mdata)
fp = open('processed.txt', 'w')
for item in sdata :

print(item)
item = item.split()
rec = item[0] + ' ' + item[1] + '\n'
fp.write(rec)

fm.close()
ft.close()
fp.close()
Output
'master.txt' contains following records:
A101 Sanjay
A102 Ajay
A103 Anuja

A104 Akhil
A105 Bhushan
A106 Ankit
A107 Vivek
A108 Ankita
A109 Aditi
A110 Harsha
'tran.txt' contains following records:
A101 D
A105 D
A112 Dheeraj A
A105 Dilip A
'processed.txt' contains following records after additions and deletions:
A102 Ajay
A103 Anuja
A104 Akhil
A105 Dilip
A106 Ankit
A107 Vivek
A108 Ankita
A109 Aditi
A110 Harsha
A112 Dheeraj

j. Given a text file, write a program to create another text file deleting the
words "a", "the", "an" and replacing each one of them with a blank
space.
Program
Delete file contents selectively
f = open('a.txt', 'r')
data = f.read()
f.close()
data = data.replace(' a ', ' ')
data = data.replace(' an ', ' ')
data = data.replace(' the ', ' ')

f = open('b.txt', 'w')
f.write(data)
f.close()
Output
The input file 'a.txt' contains following text:
The world is full of duplicates.
I want an apple a day.
I cannot do the stuff that you want me to do.
The output file 'b.txt' contains following text:
The world is full of duplicates.
I want apple day.
I cannot do stuff that you want me to do.

[A] State whether the following statements are True or False:

a. We can send arguments at command-line to any Python program.
Answer
True

b. The zeroth element of sys.argv is always the name of the file being
executed.
Answer
True

c. In Python a function is treated as an object.
Answer
True

d. A function can be passed to a function and can be returned from a
function.
Answer
True

e. A decorator adds some features to an existing function.
Answer
True

f. Once a decorator has been created, it can be applied to only one function
within the program.
Answer

False
g. It is mandatory that the function being decorated should not receive any

arguments.
Answer
False

h. It is mandatory that the function being decorated should not return any
value.
Answer
False

i. Type of 'Good!' is bytes.
Answer
False

j. Type of msg in msg = 'Good!' is str.
Answer
True

[B] Answer the following questions:

a. Is it necessary to mention the docstring for a function immediately below
the def statement?
Answer
Yes

b. Write a program using command-line arguments to search for a word in
a file and replace it with the specified word. The usage of the program is
shown below.
C:\> change -o oldword -n newword -f filename
Program
change.py
import sys
import getopt
sys.argv = ['change.py', '-o', 'Unit', '-n', 'UNIT', '-f', 'Syllabus.txt']
if len(sys.argv) != 7 :

print('Incorrect usage')
print('change -o oldword -n newword -f filename')
sys.exit(1)

try :
options, arguments = getopt.getopt(sys.argv[1:],'ho:n:f:')

except getopt.GetoptError :
print('change -o oldword -n newword -f filename')

else :
for opt, arg in options :

if opt == '-h' :
print('change -o oldword -n newword -f filename')
sys.exit(2)

elif opt == '-o' :
oldword = arg

elif opt == '-n' :
newword = arg

elif opt == '-f' :
filename = arg

else :
print('old word:', oldword)
print('newword: ', newword)
print('filename:', filename)
if oldword and newword and filename:

f = open(filename, 'r')
data = f.read()
f.close()
data = data.replace(oldword, newword)
f = open(filename, 'w')
f.write(data)
f.close()

Tips
The program is stored in the file 'change.py'. The file 'syllabus.txt' is
present in the same folder as 'change.py'. It contains the following text:
Unit 1 : Object Oriented Programming
Unit 2 : Data encapsulation

Unit 3 : Inheritance
Unit 4 : Polymorphism
Unit 5 : Late binding
Unit 6 : Constructor
Unit 7 : Method overloading

c. Write a program that can be used at command prompt as a calculating
utility. The usage of the program is shown below.
C:\> calc <switch> <n> <m>
Where, n and m are two integer operands. switch can be any arithmetic
operator. The output should be the result of the operation.
Program
import sys
if len(sys.argv) != 4 :

print('Incorrect usage')
print('calc operator number number')
sys.exit(1)

operator = sys.argv[1]
m = int(sys.argv[2])
n = int(sys.argv[3])
if operator == '+' :

result = m + n
print('operator =', operator, 'm =', m, 'n =', n, 'result =', result)

elif operator == '-' :
result = m - n
print('operator =', operator, 'm =', m, 'n =', n, 'result =', result)

elif operator == '*' :
result = m * n
print('operator =', operator, 'm =', m, 'n =', n, 'result =', result)

elif operator == '/' :
result = m * n
print('operator =', operator, 'm =', m, 'n =', n, 'result =', result)

else :
print('Illegal operator')

Output

The program can be executed at command-line as shown below:
C:\>ilde -r calc.py + 23 45
On execution is produces the following output:
operator = + m = 23 n = 45 result = 68

d. Rewrite the following expressions using bitwise compound assignment
operators:

e. Consider an unsigned integer in which rightmost bit is numbered as 0.
Write a function checkbits(x, p, n) which returns True if all 'n' bits
starting from position 'p' are on, False otherwise. For example,
checkbits(x, 4, 3) will return true if bits 4, 3 and 2 are 1 in number x.
Program
def display_bits(n) :

for i in range(7, -1, -1) :
andmask = 1 << i
k = n & andmask
print('0', end = '') if k == 0 else print('1', end = '')

print()
def checkbits(x, p, n) :

no = 0
for i in range(0, n) :

if ((x >> (p - 1)) & 1) != 1 :
return 0

p -= 1
return 1

num = int(input('Enter a number between 0 to 255: '))
display_bits(num)
p = int(input('Enter position: '))

n = int(input('Enter number of bits: '))
flag = checkbits(num, p, n)
if flag == 1 :

print(n, 'bits starting from position', p, 'are on')
else :

print(n, 'bits starting from position', p, 'are off')
Output
Enter a number between 0 to 255: 255
11111111
Enter position: 4
Enter number of bits: 3
3 bits starting from position 4 are on
Enter a number between 0 to 255: 96
01100000
Enter position: 6
Enter number of bits: 3
3 bits starting from position 6 are off

f. Write a program to receive a number as input and check whether its 3rd,
6th and 7th bit is on.
Program
Program to check whether 3rd, 6th and 7th bit of a number is on
def display_bits(n) :

for i in range(7, -1, -1) :
andmask = 1 << i
k = n & andmask
print('0', end = '') if k == 0 else print('1', end = '')

num = int(input('Enter a number between 0 to 255: '))
display_bits(num)
j = num & 0x08
print()
print('Its third bit is off') if j == 0 else print('Its third bit is on')
j = num & 0x40
print('Its sixth bit is off') if j == 0 else print('Its sixth bit is on')
j = num & 0x80

print('Its seventh bit is off') if j == 0 else print('Its seventh bit is on')
Output
Enter a number between 0 to 255: 65
01000001
Its third bit is off
Its sixth bit is on
Its seventh bit is off

g. Write a program to receive an 8-bit number into a variable and then
exchange its higher 4 bits with lower 4 bits.
Program
Program to exchange a number's higher 4 bits with lower 4 bits
def display_bits(n) :

for i in range(7, -1, -1) :
andmask = 1 << i
k = n & andmask
print('0', end = '') if k == 0 else print('1', end = '')

num = int(input('Enter a number between 0 to 255: '))
display_bits(num)
n1 = num << 4
n2 = num >> 4
num = n1 | n2
print('\nAfter exchanging bits:')
display_bits(num)
Output
Enter a number between 0 to 255: 64
01000000
After exchanging bits:
00000100

h. Write a program to receive an 8-bit number into a variable and then set
its odd bits to 1.
Program
def display_bits(n) :
for i in range(7, -1, -1) :

andmask = 1 << i
k = n & andmask
print('0', end = '') if k == 0 else print('1', end = '')
def modify_oddbits(n) :

for i in range(7, -1, -2) :
ormask = 1 << i
n = n | ormask

return n
num = int(input('Enter a number between 0 to 255: '))
display_bits(num)
num = modify_oddbits(num)
print()
display_bits(num)
Output
Enter a number between 0 to 255: 24
00011000
10111010

[A] State whether the following statements are True or False:

a. Multi-threading improves the speed of execution of the program.
Answer
True

b. A running task may have several threads running in it.
Answer
True

c. Multi-processing is same as multi-threading.
Answer
False

d. If we create a class that inherits from the Thread class, we can still
inherit our class from some other class.
Answer
True

e. It is possible to change the name of the running thread.
Answer
True

f. To launch a thread we must explicitly call the function that is supposed
to run in a separate thread.
Answer
False

g. To launch a thread we must explicitly call therun() method defined in a
class that extends the Thread class.
Answer
False

h. Though we do not explicitly call the function that is supposed to run in a
separate thread, it is possible to pass arguments to the function.
Answer
True

i. We cannot control the priority of multiple threads that we may launch in
a program.
Answer
False

[B] Answer the following questions:

a. What is the difference between multi-processing and multi- threading?
Answer
Multi-processing is the ability to execute multiple processes
simultaneously.
Multi-threading is the ability to execute multiple parts (units) of a
program simultaneously.

b. What is the difference between preemptive multi-threading and
cooperative multi-threading?
Answer
Preemptive multi-threading - The OS decides when to switch from one
task to another.
Cooperative multi-threading - The task decides when to give up the
control to the next task.

c. Which are the two methods available for launching threads in a Python
program?
Answer

- By passing a name of the function that should run as a separate thread,
to the constructor of the Thread class.

- By overriding init () and run() methods in a subclass of Thread class.
d. If Ex class extends the Thread class, then can we launch multiple

threads for objects of Ex class? If yes, how?
Answer
import threading
class Ex(threading.Thread) :

def init (self, s) :
threading.Thread. init (self)
self.msg = s

def run(self) :
while True :

print(self.msg, end = '\n')
th1 = Ex('Hello')
th1.start()
th2 = Ex('Hi')
th2.start()
Output
HelloHi
HelloHi
HelloHi
HelloHi
HelloHi
HelloHi
HelloHi
… … …

e. What do different elements of the following statement signify?
th1 = threading.Thread(target = quads, args = (a, b))
Answer
threading is a module. It contains a Thread class.
Object of Thread class is being created here.
The address of the object will get stored in th1.

quads is the name of the function that will run in a separate thread. a, b
are the arguments that will be passed to the quad function. The
arguments must be in the form of a tuple.

f. Write a multithreaded program that copies contents of one folder into
another. The source and target folder paths should be input through
keyboard.
Program
import sys
import threading
import os
import shutil
def copy_file(input_file, output_file):

shutil.copyfile(input_file, output_file)
s = input_file + ' copied!\n'
print(s)

source = sys.argv[1]
target = sys.argv[2]
if not os.path.exists(source) :

print('source path does not exist')
exit()

if not os.path.exists(target) :
os.mkdir(target)

os.chdir(source)
lst = os.listdir('.')
tharr = []
for file in lst :

sourcefilepath = source + '\\' + file
targetfilepath = target + '\\' + file
th = threading.Thread(target = copy_file, args = (sourcefilepath,
targetfilepath))
th.start()
tharr.append(th)

for th in tharr :

th.join()
Output
c:\Users\Kanetkar\Desktop\sourcedir\cubes.txt copied!
c:\Users\Kanetkar\Desktop\sourcedir\swam.txt copied!
c:\Users\Kanetkar\Desktop\sourcedir\Resolutions.docx copied!

g. Write a program that reads the contents of 3 files a.txt, b.txt and c.txt
sequentially and converts their contents into uppercase and writes them
into files aa.txt, bb.txt and cc.txt respectively. The program should report
the time required in carrying out this conversion. The files a.txt, b.txt
and c.txt should be added to the project and filled with some text. The
program should receive the file names as command-line arguments.
Suspend the program for 0.5 seconds after reading a line from any file.
Program
import time
import sys
import threading
start_time = time.time()
lst1= sys.argv[1:4]
lst2 = sys.argv[4:]
if len(lst1) != 3 or len(lst2) != 3 :

print('Imporper usage')
print('Correct usage: convert a.txt b.txt c.txt aa.txt bb.txt cc.txt')
exit()

for i in range(0, 3) :
f1 = open(lst1[i], 'r')
f2 = open(lst2[i], 'w')
while True :

data = f1.readline()
if data == '' :

break
time.sleep(0.5)
data = data.upper()
f2.write(data)

f1.close()

f2.close()
end_time = time.time()
print('Time required = ', end_time - start_time, 'sec')
Output
Time required = 4.6332080364227295 sec

h. Write a program that accomplishes the same task mentioned in Exercise
[B](g) above by launching the conversion operations in 3 different
threads.
Program
import time
import sys
import threading
def readFile(input_file, output_file):

f1 = open(input_file, 'r')
f2 = open(output_file, 'w')
while True :

data = f1.readline()
if data == '' :

break
data = data.upper()
f2.write(data)
time.sleep(0.5)

start_time = time.time()
lst1= sys.argv[1:4]
lst2 = sys.argv[4:]
if len(lst1) != 3 or len(lst2) != 3 :

print('Imporper usage')
print('Correct usage: convert a.txt b.txt c.txt aa.txt bb.txt cc.txt')

exit()
tharr = []
for i in range(0, 3) :

th = threading.Thread(target = readFile, args = (lst1[i], lst2[i]))
th.start()

tharr.append(th)
for th in tharr:

th.join()
end_time = time.time()
print('Time required = ', end_time - start_time, 'sec')
Output
Time required = 1.5756025314331055 sec

[C] Match the following:

a. Multiprocessing 1. use multiprocessing module

b. Pre-emptive multi-threading 2. use multi-threading

c. Cooperative multi-threading 3. use threading module

d. CPU-bound programs 4. use multi-processing

e. I/O-bound programs 5. use asyncio module

Answer
Multiprocessing - use multiprocessing module
Pre-emptive multi-threading - use threading module
Cooperative multi-threading - use asyncio module
CPU-bound programs - use multi-processing
I/O-bound programs - use multi-threading

[A] State whether the following statements are True or False:

a. All multi-threaded applications should use synchronization.
Answer
False

b. If 3 threads are going to read from a shared list it is necessary to
synchronize their activities.
Answer
False

c. A Lock acquired by one thread can be released by either the same thread
or any other thread running in the application.
Answer
True

d. If Lock is used in reentrant code, then the thread is likely to get blocked
during the second call.
Answer
True

e. Lock and RLock work like a Mutex.
Answer
True

f. A thread will wait on an Event object unless its internal flag is cleared.
Answer

True
g. A Condition object internally uses a lock.
Answer
True

h. While using RLock we must ensure that we callrelease() as many times
as the number of calls to acquire().
Answer
True

i. Using Lock, we can control the maximum number of threads that can
access a resource.
Answer
True

j. There is no difference between Event and Condition synchronization
objects.
Answer
False

k. If in a Python program one thread reads a document and another thread
writes to the same document then the two threads should be
synchronized.
Answer
True

l. If in a Python program one thread copies a document and another thread
displays progress bar then the two threads should be synchronized.
Answer
True

m. If in a Python program one thread lets you type a document and another
thread performs spellcheck on the same document then the two threads
should be synchronized.
Answer
True

n. If in a Python program one thread scans a document for viruses and
another thread lets you pause or stop the scan then the two threads
should be synchronized.
Answer
True

[B] Answer the following questions:

a. Which synchronization mechanisms are used for sharing resources
amongst multiple threads?
Answer
Lock, RLock and Semaphore synchronization mechanisms are used for
sharing resources amongst multiple threads.

b. Which synchronization objects are used for inter-thread communication
in a multi-threaded application?
Answer
Event and Condition synchronization objects are used for inter- thread
communication in a multi-threaded application.

c. What is the difference between a Lock and RLock?
Answer
Lock is used to synchronize access to a shared resource.
Rlock is used to synchronize access to a shared resource in reentrant
code.

d. What is the purpose of the Semaphore synchronization primitive?
Answer
A semaphore is used to limit access to a resource like network
connection or a database server to a limited number of threads.

e. Write a program that has three threads in it. The first thread should
produce random numbers in the range 1 to 20, the second thread should
display the square of the number generated by first thread on the screen,
and the third thread should write cube of number generated by first
thread into a file.

Program
import threading
import random
import queue
import time
import collections
def generate() :

for i in range(10) :
cond.acquire()
num = random.randrange(10, 20)
print('Generated number =', num)
qfors.append(num)
qforc.append(num)
cond.notifyAll()
cond.release()

def square() :
for i in range(10) :

cond.acquire()
if len(qfors) :

num = qfors.popleft()
print('num =', num, 'Square =', num * num)

cond.notifyAll()
cond.release()

def cube() :
for i in range(10) :

cond.acquire()
if len(qforc) :

num = qforc.popleft()
f.write('num = ' + str(num) + ' cube = ' + str(num * num * num) +
'\n') cond.notifyAll()

cond.release()
f = open('cubes.txt', 'w')
qfors = collections.deque()
qforc = collections.deque()

cond = threading.Condition()
th1 = threading.Thread(target = generate)
th2 = threading.Thread(target = square)
th3 = threading.Thread(target = cube)
th1.start()
th2.start()
th3.start()
th1.join ()
th2.join()
th3.join()
f.close()
print('All Done!!')
Output
Generated number = 19
Generated number = 12
Generated number = 16
Generated number = 12
Generated number = 11
Generated number = 10
Generated number = 17
Generated number = 10
Generated number = 19
Generated number = 15
num = 19 Square = 361
num = 12 Square = 144
num = 16 Square = 256
num = 12 Square = 144
num = 11 Square = 121
num = 10 Square = 100
num = 17 Square = 289
num = 10 Square = 100
num = 19 Square = 361
num = 15 Square = 225
All Done!!

f. Suppose one thread is producing numbers from 1 to n and another thread
is printing the produced numbers. Comment on the output that we are
likely to get.
Answer
The output is likely to get mixed up as there is no synchronization
between the two threads.

g. What will happen if thread t1 waits for threadt2 to finish and thread t2
waits for t1 to finish?
Answer
A deadlock situation would occur.

[C] Match the following pairs:

a. RLock 1. limits no. of threads accessing a resource

b. Event 2. useful in sharing resource in reentrant code

c. Semaphore 3. useful for inter-thread communication

d. Condition 4. signals waiting threads on change in state

e. Lock 5. useful in sharing resource among threads

Answer
RLock - useful in sharing resource in reentrant code
Event - useful for inter-thread communication
Semaphore - limits no. of threads accessing a resource
Condition - signals waiting threads on change in state
Lock - useful in sharing resource among threads

[A] State whether the following statements are True or False:

a. Numpy library gets installed when we install Python.
Answer
False

b. Numpy arrays work faster than lists.
Answer
True

c. Numpy array elements can be of different types.
Answer
False

d. Once created, a Numpy arrays size and shape can be changed
dynamically.
Answer
True

e. np.array_equal(a, b)) would return True if shape and elements of a and
b match.
Answer
True

[B] Answer the following questions:

a. How will you create a Numpy array of first 10 natural numbers?

Answer
import numpy as np
intarr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

b. Can we create an array of complex numbers using Numpy?
Answer
Yes, as shown below:
c = np.array([[1, 2], [3, 4], [-1, 2]], complex)

c. How would you create 5 arrays each of size 3 x 4 x 5 and fill them with
values 0, 1, 5, random and garbage values respectively?
Answer
import numpy as np
a1 = np.zeros((3, 4, 5)) # creates 3D array of zeros
a2 = np.ones((3, 4, 5)) # create 3D array of ones
a3 = np.full((3, 4, 5), 5) # creates 3D array with all values set to 5
a4 = np.empty((3, 4, 5)) # creates 3D array with garbage values
a5 = np.full((3, 4, 5), random.random()) # array - random values

d. How would you create a 50-element array and fill it with odd numbers
starting from 1?
Answer
import numpy as np
a3 = np.linspace(1, 100, 2)

e. How will you obtain the type of elements, number of elements, base
address and number of bytes occupied by the following Numpy array?
a1 = np.array([1, 2, 3, 4])
Answer
import numpy as np
a1 = np.array([1, 2, 3, 4])
print(a1.dtype) # prints int32
print(a1.itemsize) # prints 4
print(a1.data) # prints <memory at 0x024BEE08>
print(a1.nbytes) # prints 16

f. How will you obtain dimensions and shape of the following Numpy
array?
a1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8])
Answer
import numpy as np
a1 = np.array([[1, 2, 3, 4],[5, 6, 7, 8]])
print(a1.ndim)
print(a1.shape)
print(a1.size)

g. Given two 3 x 4 matrices how would you add, subtract, multiply and
divide corresponding elements of these matrices?
Answer
import numpy as np
a1 = np.array([[1, 2, 3, 4],[5, 6, 7, 8], [1, 4, 5, 2]])
a2 = np.array([[1, 1, 1, 1],[2, 2, 2, 2], [3, 3, 3, 3]])
a3 = a1 + a2
a4 = a1 - a2
a5 = a1 * a2
a6 = a1 / a2

h. Which of the following are the scalar arithmetic operations on Numpy
array?
import numpy as np
a1 = np.array([[10, 2, 3, 4],[5, 6, 7, 8]])
a2 = np.array([[1, 1, 1, 1],[2, 2, 2, 2]])
a3 = a1 + a2
a4 = a1 - a2
a5 = a1 * a2
a6 = a1 / a2
a7 = a1 % a2
a8 = a1 ** 2
a9 += a1
a10 += 5
a11 = a1 + 2
a12 = a1 ** 2

Answer
The last three operations are scalar arithmetic operations.

[C] Match the following pairs:

a. s = np.trace(a) 1. Statistical operation

b. s = a.cumsum(axis = 1)) 2. Linear algebra operation

c. a2 = np.copy(a1) 3. Deep copy operation

d. print(a1 < 2) 4. Corresponding ele. comparison

e. print(a1 > a2) 5. Comparison with one value

f. print(a[1:3][3:6]) 6. Bitwise operation

g. a2 = invert(a1) 7. Slicing operation

Answer
a - 1
b - 2
c - 3
d - 5
e - 4
f - 7
g - 6

Maximum Marks: 40

[5 Marks, 1 Mark each]

[5 Marks, 1 Mark each]

Periodic Test I
(Based on Chapters 1 to 6)

Time: 90 Minutes

[A] Fill in the blanks:

1. In Python every entity is treated as object.
2. Python has 33 keywords.
3. The function used to obtain address of an object is id().
4. The function used to find out whether a variable is of int type is type(

).
5. The three varieties of types in Python are Basic, Container and User-

defined.

[B] State True or False:

1. In Python there is no need to define type of a variable.
True

2. In Python an int can have any arbitrary value.
True

3. A single line comment in Python language starts with # sign.
True

4. Effect of switch statement can be obtained using if - elif -else.
True

[5 Marks, 1 Mark each]

[5 Marks, 1 Mark each]

5. There is no do-while loop in Python.
True

[C] What would be the output of the following programs:

1. print(6 // 2)
Output
3

2. print(3 % -2)
Output
-1

3. print(-2 % -4)
Output
-2

4. print(17 / 4)
Output
4.25

5. print(-5 // -3)
Output
1

[D] Point out the error, if any, in the following programs:

1. import math
x = 2
print(math.sqrt(x))
No error

2. msg = 'C:\\newfolder\\newfile'
print('msg')
No error.

3. a = 4
b = 2

[20 Marks, 5 Marks each]

if a = b :
print('Equal')

else :
print('Unequal')

Error. Use == instead of =.
4. lst = ['00', '01', '02', '03']

i = 0
while i < len(lst) :

print(i, lst[i])
i += 1

No error
5. lst = ['Lion', 'Tiger', 'Wolf', 'Cheetah']

for i, ele in enum(lst) :
print(i, ele)

Error. Use enumerate() function, there is no function enum().

[E] Attempt the following questions:

1. Write a program to enter the numbers till the user wants and at the end
it should display the count of positive, negative and zeros entered.
Program
Count number of positives, negatives and zeros
ans = 'y'
pos = neg = zero = 0
while ans == 'y' or ans == 'Y' :

num = int(input('Enter a number: '))
if num == 0 :

zero += 1
elif num > 0 :

pos += 1
elif num < 0 :

neg += 1
ans = input('Do you want to continue? ')

print('You entered', pos, 'positive numbers')

print('You entered', neg, 'negative numbers')
print('You entered', zero, 'zeros')

2. Write a program to find the range of a set of numbers that are input
through the keyboard. Range is the difference between the smallest
and biggest number in the list.
Program
Program to find the range of a set of numbers
import sys
tot = int(input("Enter total no. of numbers "))
i = 0
small = sys.maxsize
big = -sys.maxsize
while i < tot :

n = int(input("Enter a number: "))
if n < small :

small = n
if n > big :

big = n i += 1
range = big - small
print('Range = ', range)

3. If three integers are entered through the keyboard, write a program to
determine whether they form a Pythagorean triplet or not.
Program
a = int(input('Enter a number: '))
b = int(input('Enter a number: '))
c = int(input('Enter a number: '))
if a * a == b * b + c * c or b * b == a * a + c * c or c * c == a * a + b *
b :

print('Numbers form a Pythagorean triplet')
else :

print('Numbers do not form a Pythagorean triplet')
4. Write a program to calculate sum of first 10 terms of the following

series:

1! 2! + 2! 3! + 3! 4! + 4! 5! + …… + 9! 10!
Program
for i in range(1, 11) :

prod1 = 1
s = 0
for j in range(1, i + 1) :

prod1 = prod1 * j
prod2 = prod1 * (j + 1)
term = prod1 * prod2
print(prod1, prod2)
s = s + term

print ('sum of series = ', s)

Maximum Marks: 40

[5 Marks, 1 Mark each]

[5 Marks, 1 Mark each]

Periodic Test II
(Based on Chapters 7 to 11)

Time: 90 Minutes

[A] Answer the following questions:

1. How will you create an empty list, empty tuple, empty set and empty
dictionary?
Answer
lst = []
tpl = ()
s = set()
dct = { }

2. What is the difference between a set and a frozenset?
Answer
A set's elements can change, a frozenset's elements cannot change.

3. What's wrong with the set s = {[10, 20, 30], (10, 20, 30)}?
Answer
A set cannot contain a list as one of its element.

4. How will you convert the list [10, 20, 30, 40, 10, 30] into a list [40,
10, 20, 30] without using del() or remove() method?
Answer
lst = list(set(lst))

5. How will you print a float centrally justified in 10 columns, with 3
places beyond decimal point?
Answer
print(f'{round(a,3):^{10}}')

[B] State True or False:

1. Similar elements are usually stored in a set.

[5 Marks, 1 Mark each]

[5 Marks, 1 Mark each]

False
2. Dissimilar elements are usually stored in a list.

False
3. Key - value pairs are usually stored in a tuple.

False
4. Unique elements are usually stored in a dictionary.

False
5. Raw strings are used to format the output in a print() function.

False

[C] Match the following:

(a) Dictionary (1) a = set()

(b) Tuple (2) x = { }

(c) Set (3) b = 'msg'

(d) List (4) d = (10, 20, 30)

(e) String (5) f = [10, 20, 30]

Answer
(a) - (2)
(b) - (4)
(c) - (1)
(d) - (5)
(e) - (3)

[D] Point out the error, if any, in the following programs:

1. l, b, h = input('Enter length, breadth & height:
')
print(l, b, h)
Answer
Error: too many values to unpack

[20 Marks, 5 Marks each]

2. lst = [11, 10, 5, 77, 24]
lst.add(45)
print(lst)
Answer
Error: 'list' object has no attribute 'add'

3. tpl = ((1, 5), (2, 3), (4, 5))
for x, y in tpl :

print(x, y)
Answer
No error

4. s = {77, 41, 22}
s.del(41)
print(s)
Answer
Error: del() cannot be called using s

5. dct = { 'Lion' : 4, 'Tiger' : 2, 'Wolf' : 9, 'Cheetah' : 1 }
for k, v in dct.keys() :

print(k, v)
Answer
Error: too many values to unpack

[E] Attempt the following questions:

1. Write a program to receive the value of radius of a circle and calculate
and print its area and circumference. Make sure that both values are
printed in 15 columns each with 2 places beyond decimal point.
Program
r = int(input('Enter radius of circle: '))
a = round(3.14 * r * r, 2)
c = round(2 * 3.14 * r, 2)
print(f'Area = {a:15} {Circumference = }{c:15}')
Output
Enter radius of circle: 5

Area = 78.5 Circumference = 31.4
2. A dictionary contains roll number as key and first name, middle name

and last name as values. Write a program to print the dictionary items
in alphabetical order by first name.
Program
import operator d1 = {

'A101' : ('Rahul', 'Ajay', 'Joshi'),
'A102' : ('Ramesh', 'Atul', 'John'),
'A121' : ('Ritesh', 'Abhin', 'Kate'),
'A111' : ('Rajesh', 'Akash', 'Zade')

}
d2 = dict(sorted(d1.items(), key = operator.itemgetter(1)))
print(d2)
Output
{'A101': ('Rahul', 'Ajay', 'Joshi'), 'A111': ('Rajesh', 'Akash', 'Zade'),
'A102': ('Ramesh', 'Atul', 'John'), 'A121': ('Ritesh', 'Abhin', 'Kate')}

3. A tuple contains tuples of book title and author. Write a program to
print the titles and author names with first letter of each word in
capital and rest in small case.
Program
tpl = (('Principles of programming', 'rahul ajay joshi'), ('Art of
computer science', 'donald e knuth'), ('Modern algebra', 'Ritesh abhin
KATE'))
for t in tpl :

print(t[0].title(), t[1].title())
Output
Principles Of Programming Rahul Ajay Joshi
Art Of Computer Science Donald E Knuth
Modern Algebra Ritesh Abhin Kate

4. A list contains numbers. One of these numbers occurs only once, all
others occur twice. Write a program to identify the number which
occurs only once.
Program

lst = [10, 20, 30, 10, 40, 30, 20, 50, 60, 50, 60]
s = set(lst)
for num in s :

c = lst.count(num)
if c == 1 :

print(num, 'occurs only once')
break

Output
40 occurs only once

Maximum Marks: 40

[5 Marks, 1 Mark each]

[10 Marks, 1 Mark each]

Periodic Test III
(Based on Chapters 12 to 17)

Time: 90 Minutes

[A] State True or False:

1. We cannot create a tuple using comprehension.
True

2. A Python function can receive Positional arguments, Keyword
arguments, Variable-length positional arguments and Variable- length
keyword arguments.
True

3. When we execute a program its module name is module and it is
available in the variable name .
True

4. Functions show() and display() defined in a module functions can be
used by importing them using the statement:
import show, display False

5. For a directory to be treated as a package it must contain a file named
init .py in it.
True

[B] Answer the following questions:

1. How will you receive 4 numbers as input from keyboard using list
comprehension?
Answer
n1, n2, n3, n4 = [int(n) for n in input('Enter four values: ').split()]

2. How will you generate 20 random numbers in the range 10 to 100
using list comprehension?

Answer
import random
a = [random.randrange(10, 100) for n in range(20)]

3. How will you generate the following list using comprehension? [[25,
125], [36, 216], [49, 343], [64, 512], [81, 729], [100, 1000]]
Answer
a = [[n, n * n] for n in range(5, 11)]

4. How will you create a set even numbers in the range 10 to 30 using
comprehension?
Answer
a = [n for n in range(10, 30) if n % 2 == 0]

5. How will you delete all numbers having a value between 20 and 50
from the following list using comprehension?
lst = [10, 3, 4, 5, 15, 20, 21, 23, 46, 50]
Answer
lst1 = [n for n in lst if n < 20 or n > 50]

6. Using dictionary comprehension how will you convert
d = {'AMOL': 20, 'ANIL': 12, 'SUNIL': 13, 'RAMESH': 10}
into
{'Amol': 400, 'Anil': 144, 'Sunil': 169, 'Ramesh': 100}
Answer
d = {k.capitalize() : v ** 2 for (k, v) in d.items()}

7. Consider the following code snippet:
def print_it(a, b, c, d, e) :

print(a, b, c, d, e)
tpl = ('A', 'B', 'C', 'D', 'E')
How will you pass all elements of a tuple t to a function print_it()?
Answer
print_it(*tpl)

8. Consider the following code snippet:

[20 Marks, 5 Marks each]

def print_it(i, j, *args, x, y, **kwargs) :
pass

print_it(10, 20, 100, 200, x = 30, y = 40)
What gets passed to args and kwargs?
Answer
100, 200 go to args, nothing goes to kwargs

9. If a function cal_sum() receives 3 integers and returns their sum,
which of the following calls to a function cal_sum() are acceptable?
i. sum = cal_sum(a, b, c)
ii. print(cal_sum(a, b, c))
iii. sum = cal_sum(a, calSum(25, 10, 4), b)
Answer
i, ii, iii and iv

10. Consider the following code snippet:
def print_it(**kwargs) :

pass
dct = {'Student' : 'Ajay', 'Age' : 23}
Which is the CORRECT way to pass dct to print_it()?
Answer
print_it(**dct)

[C] Attempt the following questions:

1. Write a program that converts list of temperature in Celsius degrees to
equivalent Fahrenheit using list comprehension.
Program
celsius = [32, 40, 25, 45, 18]
farh = [(e * 9 /5) + 32 for e in celsius]
print(farh)
Output
[89.6, 104.0, 77.0, 113.0, 64.4]

2. Write a recursive function to obtain sum of first 25 natural numbers.

Program
def resum(num) :

if num == 1 :
return num

return num + resum(num - 1)
print('Sum of first 25 numbers: ', resum(25))
Output
Sum of first 25 numbers: 325

3. A string is entered through the keyboard. Write a recursive function
that counts the number of capital letters in this string.
Program
def count_caps(s, count) :

if s == '' :
return count

if s[0] >= 'A' and s[0] <= 'Z' :
count += 1

count = count_caps(s[1:], count)
return count

c = count_caps('Cidade de Goa', 0)
print('Count of caps = ', c)
Output
Count of caps = 2

4. Write a program using functional programming to prepend a string 'Hi
' to every element in a list of strings.
Program
lst1 = ['Shrinivas', 'Savitri', 'Shanmukh', 'Shweta']
lst2 = map(lambda s : 'Hi ' + s, lst1)
for item in lst2 :

print(item)
Output
Hi Shrinivas

Hi Savitri
Hi Shanmukh
Hi Shweta

5. Suppose a dictionary contains names of students and marks obtained
by them in an examination. Write a program using functional
programming to obtain a list of students who obtained less than 40
marks in the examination.
Program
dct = {'Shrinivas' : 35, 'Savitri' : 45, 'Shanmukh' : 38, 'Shweta' : 42}
lst2 = filter(lambda x : x[1] < 40, dct.items())
for item in lst2 :

print(item)
Output
('Shrinivas', 35)
('Shanmukh', 38)

Maximum Marks: 40

[4 Marks, 1 Mark each]

[12 Marks, 1 Mark each]

Periodic Test IV
(Based on Chapters 18 to 21)

Time: 90 Minutes

[A] Fill in the blanks:

1. Every class is derived from an object class.
2. Inheritance and Containership reuse mechanisms are provided in

Python.
3. When we are using containership, we are doing byte code level reuse.
4. Generator functions create iterators.

[B] State True or False:

1. Construction of an object always proceeds from derived towards base.
False

2. From an abstract class an object cannot be created.
True

3. On calling an instance method of an object, address of the object
always gets passed to it.
True

4. Iterable(s) cannot be passed to a zip() function.
False

5. In containership an object is nested inside another object.
True

6. +, - and * operators have been overloaded in str class. False
7. The + operator has been overloaded in str, list and int classes.

True
8. It is possible to call a global function, another class method and

instance method from a class method?

[14 Marks, 1 Mark each]

True
9. The size of the object is influenced by instance data, class data, global

data and local variables.
False

10. Class methods can access class data and global data.
True

11. If NewSample class is derived from Sample class and an object of
NewSample is created then init () of Sample class followed by _init_(
) of NewSample class will be called.
True

12. A generator expression generates the next element on demand, rather
than generating all elements upfront.
True

[C] Attempt the following questions:

1. Separate the following into classes and objects:
Bird, Player, Crow, Raj, Eagle, Flower, Rose, Lily, Flute, Instrument
Answer
Class - Bird, Player, Flower, Instrument
Object - Crow, Raj, Eagle, Rose, Lily, Flute

2. How will you create an object of a Trial class?
Answer
t = Trial()

3. Which of the following can be done with regards to a class?
i. A class can be inherited from another class
ii. A class can be defined inside another class
Answer
Both, i and ii

4. What does the following code do? e = Sample()
Answer

Allocates space for the object of type Sample and calls the constructor
function

5. What happens when control returns from fun()?
def func() :

s = new Trial()
Answer
del() method gets called.

6. How many arguments will be passed to the _init_() in the following
statement?
t = Trial(10, 3.14, 'Hello')
Answer
4

7. How many times does the _init_() of Student class get called on
execution of the following code snippet?
lst = []
lst.append(Sample('Raju', 25))
lst.append(Sample('Anand', 34))
Answer
2 times

8. How should show() be defined in Example class?
e = Example()
e.show('A', '3.14, 10, 20, 30)
Answer
def class Example :

def show(self, a, b, c, d) :
pass

9. To overload the % operator, which method should be defined in the
corresponding class?
Answer
mod()

[10 Marks, 5 Marks each]

10. To overload the //= operator, which method should be defined in the
corresponding class?
Answer
ifloordiv()

11. How will you prevent a new class to get inherited from an existing
class Employee?
Answer
There is no mechanism in Python to do this

12. Suppose a base class contains two instance variables x, y and one class
variable z. A class derived from it contains an instance variable a and
two class variables b and c. What will the derived class object
contain?
Answer
x, y, a

13. What does an _iter_() function of list or str return?
Answer
An iterator object

14. What will be the output of the following code snippet?
lst = ['A', 20, 'C', 4.50]
item = lst. iter ()
print(item. next ())
Answer
A

[D] Attempt the following questions:

1. Write a program that implements a Person class containing name, and
age. Derive a class Student from Person class and maintain roll
number and marks in 3 subjects in it. Create a list of 5 Student objects
and fill them with suitable values through the class constructors.
Define a class method display() to print the list contents on the screen.
Program

class Person :
def init (self, n, a) :

self._name = n
self._age = a

def display(self) :
print(self._name, self._age, end = ' ')

class Student(Person) :
def init (self, n, a, r, m1, m2, m3) :

super(). init (n, a)
self._rollno = r
self._marks1 = m1
self._marks2 = m2
self._marks3 = m3

def display(self) :
super().display()
print(self._rollno, self._marks1, self._marks2, self._marks3)

lst = []
s = Student('Smita', 23, 'A101', 45, 50, 55)
lst.append(s)
s = Student('Shiela', 24, 'A111', 55, 60, 55)
lst.append(s)
s = Student('Shailesh', 23, 'S123', 45, 56, 75)
lst.append(s)
s = Student('Shekhar', 25, 'A144', 56, 65, 65)
lst.append(s)
s = Student('Shyam', 23, 'S177', 75, 50, 59)
lst.append(s) for item in lst :

item.display()
Output
Smita 23 A101 45 50 55
Shiela 24 A111 55 60 55
Shailesh 23 S123 45 56 75
Shekhar 25 A144 56 65 65
Shyam 23 S177 75 50 59

2. Create two lists, one containing names of fruits and another containing
their corresponding weights. Write a program to take the two lists as
input and create a dictionary containing name of fruit as the key and
weight as value.
Program
lst1 = ['Guava', 'Mango', 'Grape', 'Banana']
lst2 = [150, 200, 15, 180]
d = {k : v for (k, v) in zip(lst1, lst2)}
print(d)
Output
{'Guava': 150, 'Mango': 200, 'Grape': 15, 'Banana': 180}

Maximum Marks: 40

[5 Marks, 1 Mark each]

[10 Marks, 1 Mark each]

Periodic Test V
(Based on Chapters 22 to 26)

Time: 90 Minutes

[A] Fill in the blanks:

1. A Python decorator begins with @ symbol.
2. Arguments passed to a Python script are available in variable sys.argv.
3. The command-line arguments passed to a script can be parsed using

getopt() function.
4. In Unicode every character is assigned an integer value called code

point which are usually expressed in hexadecimal.
5. Communicate between threads can be done using Event or Condition

object.

[B] State True or False:

1. In Parallelism multiple threads are running at the same time.
True

2. In Concurrency, at any given time only one thread is running.
True

3. Performance of I/O-bound program can improve if different units of
the program are executed in overlapping times.
True

4. Performance of a CPU-bound program can improve with parallelism.
True

5. A 100-meter race is a good example of Concurrency.
False

6. Order of except blocks matters.
True

[10 Marks, 1 Mark each]

7. Assertion performs run-time checks of assumptions.
True

8. Serialization means writing objects to a file.
True

9. 'r+' and 'w+' modes are same as both permit reading from and writing
to a file.
False

10. When 'with' keyword is used for opening a file, the file gets closed as
soon as its usage is over.
True

[C] Answer the following questions:

1. Which out of syntax error, logical error and exception occurs at the
time of execution?
Answer
exception

2. How will you apply a decorator @yk_decorator to a function fun()?
Answer
@yk_decorator
def fun() :

pass
3. Consider the following code snippet:

def yk_decorator(func) :
def wrapper() :

print('###############')
func()
print('###############')

which statement will you add at the end of this code snippet to make
the decorator work?
Answer
return wrapper

4. If we execute a script as
C:\>sample.py cat dog parrot
how will you access 'C:\>sample.py'?
Answer
sys.argv[0]

5. If a script is executed as
C:\>filecopy.py -s sourcefilename -t targetfilename
then how will you parse the arguments using getopt() function?
Answer
options = getopt.getopt(sys.argv[1:],'s:t:')

6. What will be the output of the following code snippet?
import sys, getopt
sys.argv =['C:\\a.py', '-h', 'word1', 'word2']
options, arguments = getopt.getopt(sys.argv[1:],'s:t:h')
print(options)
print(arguments)
Answer
[('-h', '')]
['word1', 'word2']

7. How will you launch a function fun() in a thread and pass arguments
a, b, c to it?
Answer
th1 = threading.Thread(target = squares, args = (a, b))

8. How will you check whether 5th and 7th bit in num are on or off?
Answer
if num & 32 == 1 and num & 128 == 1 :

print('bits 5 and 7 are on')
9. How will you store a hexadecimal value E0A485 in a bytes data type?
Answer
by = b'\xe0\xa4\x85'

[20 Marks, 5 Marks each]

10. How many except blocks will you write if same action is to be taken
in case of 3 exceptions?
Answer
Only one except clause should be written with the 3 exceptions
mentioned in a tuple

[D] Attempt the following questions:

1. Write a program that defines a function to calculate the value of c
using following formula:
c = ((a + b) / (a - b))
Program
def compute(a, b) :

try :
c = ((a + b) / (a - b))

except ZeroDivisionError :
print('Denominator is 0!!')

else :
print('c =', c)

a = int(input('Enter any integer: '))
b = int(input('Enter any integer: '))
c = compute(a, b)
Output
Enter any integer: 12
Enter any integer: 10
c = 11.0

2. A file 'sent.txt' contains multiple lines, each containing multiple
words. Write a program to find the longest words in the file.
Program
def longest_word(fname) :

f = open(fname, 'r')
words = f.read().split()
print(words)
big = len(max(words, key = len))

return [w for w in words if len(w) == big]
print(longest_word('sent.txt'))
Output
['Bad', 'officials', 'are', 'elected', 'by', 'good', 'citizens', 'who', 'do', 'not',
'vote', 'Good', 'citizens', 'is', 'a', 'rare', 'breed', 'Having', 'one', 'child',
'makes', 'you', 'a', 'parent', 'Having', 'two', 'you', 'are', 'a', 'referee',
'There', 'is', 'always', 'life', 'beyond', 'work', 'and', 'entertainment',
'Your', 'communication', 'skills', 'are', 'vital', 'Divisibility', 'of', 'integer',
'9']
['entertainment', 'communication']

3. Define a decorator function @timer which calculates the time required
to execute any function. Use this decorator to time the function
factorial() while calculating factorial values of 7, 10 and 25.
Program
import time
def timer(func) :
def calculate(*args, **kwargs) :

start_time = time.perf_counter()
value = func(*args, **kwargs)
end_time = time.perf_counter()
runtime = end_time - start_time
print(f'Finished {func. name !r} in {runtime:.8f} secs')
return value

return calculate
@timer
def factorial(num) :

p = i = 1
while i <= num :

p = p * i
i += 1

return(p)
f = factorial(7)
print('Factorial of 7 = ', f)

f = factorial(10)
print('Factorial of 10 = ', f)
f = factorial(25) print('Factorial of 25 = ', f)
Output
Finished 'factorial' in 0.00000599 secs
Factorial of 7 = 5040
Finished 'factorial' in 0.00000813 secs
Factorial of 10 = 3628800
Finished 'factorial' in 0.00001583 secs
Factorial of 25 = 15511210043330985984000000

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About Yashavant Kanetkar
	About Aditya Kanetkar
	Table of Contents
	1 Introduction to Python
	2 Getting Started
	3 Python Basics
	4 Strings
	5 Decision Control Instruction
	6 Repetition Control Instruction
	7 Console Input/Output
	8 Lists
	9 Tuples
	10 Sets
	11 Dictionaries
	12 Comprehensions
	13 Functions
	14 Recursion
	15 Functional Programming
	16 Modules and Packages
	17 Namespaces
	18 Classes and Objects
	19 Intricacies of Classes and Objects
	20 Containership and Inheritance
	21 Iterators and Generators
	22 Exception Handling
	23 File Input/Output
	24 Miscellany
	25 Concurrency and Parallelism
	26 Synchronization
	27 Numpy Library
	Periodic Tests

